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Set-up

Consider statistical linear inverse problem

Y = Tu† + σZ ,

where
▶ T : X → Y bounded linear forward operator between real

Banach space X and real Hilbert space Y,
▶ u† ∈ X unknown quantity of interest,
▶ σ > 0 noise level,
▶ Z Gaussian white noise process on Y.



Estimation and inference of features

▶ X ,Y typically function spaces such as Lp(Ω) or Hs(Ω) on some
domain Ω ⊆ Rd .

▶ Often one is not interested in whole function u† but in certain
features of it such as modes, homogeneity, monotonicity, or
support.

▶ Many features can be described by (family of) bounded linear
functionals φ ∈ X ∗.

▶ We perform inference for such features by means of statistical
hypothesis testing. Specifically, we test

H0 :
〈
φ, u†

〉
X ∗×X

= 0 against H1 :
〈
φ, u†

〉
X ∗×X

> 0.



Unregularized hypothesis testing

▶ For φ ∈ ran T ∗, construct unregularized test

Ψ0(Y ) := 1⟨Y ,Φ0⟩>c0

using probe element Φ0 ∈ Y such that

φ = T ∗Φ0.

▶ Critical value c0 can be chosen such that Ψ0 has prescribed
level of significance α ∈ (0, 1).

▶ Ψ0 has certain optimality properties [Proksch, Werner, Munk
2018].



Problems and solutions

Drawbacks
1. Unregularized test Ψ0 not defined for φ /∈ ran T ∗.
2. Probe element Φ0 is solution to ill-posed equation

T ∗Φ0 = φ.

As a consequence, power of Ψ0 can be arbitrarily close to
level α.

Our contribution
We resolve both of these issues by maximizing the power among a
class of level-α tests based upon linear estimators.
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A class of level-α tests

▶ Consider test
ΨΦ(Y ) := 1⟨Y ,Φ⟩>c

with arbitrary probe element Φ ∈ Y.

Assumptions
There exists a pair (V, V ′) of Banach spaces such that

1. ⟨v ′, v⟩X ∗×X ≤ ∥v ′∥V ′ ∥v∥V for all v ∈ V ∩ X , v ′ ∈ V ′ ∩ X ∗,

2. u† ∈ V ∩ X with ∥u†∥V ≤ 1,

3. ran T ∗ ⊆ V ′ and T ∗: Y → V ′ is bounded,

4. φ ∈ ran T ∗.

▶ For any Φ ∈ Y, critical value c can be chosen such that ΨΦ
has at most level α ∈ (0, 1) under these assumptions.



Optimal regularized hypothesis testing

▶ For any Φ ∈ Y \ {0}, ΨΦ has power

Pu† [ΨΦ(Y ) = 1] = Q
(

qN
α −

∥T ∗Φ − φ∥V ′ − ⟨Tu†, Φ⟩Y
σ ∥Φ∥Y

)
,

where Q and qN
α are the cdf and α-quantile of N (0, 1).

▶ Find optimal probe element Φ† as minimizer of JY
Tu† ,

JY
Tu†(Φ) :=

∥T ∗Φ − φ∥V ′ − ⟨Tu†, Φ⟩Y
∥Φ∥Y

.

Then ΨΦ† has maximal power among {ΨΦ : Φ ∈ Y}.

Problem
In practice u† is unknown, so JY

Tu† is unaccessible.
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Adaptive hypothesis testing

▶ Choose probe element Φ as minimizer of JZ
Y ,

JZ
Y (Φ) :=

∥T ∗Φ − φ∥V ′ − ⟨Y , Φ⟩Z∗×Z
∥Φ∥Z

,

where Z ⊂ Y is dense continuously embedded subspace such
that data Y is bounded linear functional on Z.

▶ Use two independent samples Y1 and Y2 of data, one to
construct test, another to evaluate test on.

▶ Define adaptive test

Ψ∗(Y2; Y1) :=
{

ΨΦ(Y2) if JZ
Y1

has global minimizer Φ ∈ Z,

0 otherwise.

Then Ψ∗ has level α.



Computability

▶ Define convex surrogate functional ĴZ
Y : Z × R → R,

ĴZ
Y (e, s) := ∥T ∗e − sφ∥V ′ − ⟨Y , e⟩Z∗×Z .

▶ If (e, s) ∈ Z × R is solution to

min ĴZ
Y (e, s) subject to ∥e∥Z ≤ 1, s ≥ 0

with e ̸= 0, s > 0, then

Φ = s−1e

is global minimizer of JZ
Y .
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Numerical simulations: Deconvolution

▶ Consider convolution operator Tu = h ∗ u on X = Y = L2(R)
with kernel h ∈ L1(R) given by

(Fh)(ξ) =
(
1 + 0.0009ξ2

)−2
for all ξ ∈ R.

▶ Question: Is supp u† ∩ [0, l ] = ∅?

▶ Choose

V := L1(R), V ′ := L∞(R), Z = H0.51(R).

▶ Choose critical value of all tests such that level is

α = 0.1.



Considered scenarios
Choose φ and u† as β-kernels.

(S1) Compatible smooth scenario
(S2) Compatible nonsmooth scenario
(S3) Incompatible smooth scenario
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Figure: The function φ ( ) and the truth u† ( ).



Results – compatible smooth scenario (S1)
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Figure: Exact power of unregularized test ( ), optimal test ( ), and
empirical power of adaptive test ( ) based upon 100 samples.



Results – compatible nonsmooth scenario (S2)
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Figure: Exact power of unregularized test ( ), optimal test ( ), and
empirical power of adaptive test ( ) based upon 100 samples.



Results – incompatible smooth scenario (S3)
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Figure: Exact power of unregularized test ( ), optimal test ( ), and
empirical power of adaptive test ( ) based upon 100 samples.



Conclusion

▶ For given feature φ ∈ ran T ∗, optimal level-α test based upon
linear estimator exists under a priori assumptions on u†.

▶ Adaptive test can be constructed by solving constrained convex
optimization problem.

▶ Adaptive test allows testing of features for which unregularized
testing is unfeasable due to ill-posedness.

Outlook
▶ Study power of adaptive test for other problems.
▶ Tikhonov-regularized hypothesis testing
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