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Set-up

Consider statistical linear inverse problem

Y=Tu +02Z,

where
» T: X — ) bounded linear forward operator between real

Banach space X and real Hilbert space ),
» uf € X unknown quantity of interest,

> o > 0 noise level,
» 7 Gaussian white noise process on ).



Estimation and inference of features

> X,) typically function spaces such as LP(2) or H*(2) on some
domain Q C RY,

» Often one is not interested in whole function u! but in certain
features of it such as modes, homogeneity, monotonicity, or
support.

» Many features can be described by (family of) bounded linear
functionals ¢ € X*.

» We perform inference for such features by means of statistical
hypothesis testing. Specifically, we test

Ho : <<p, uT>X*XX =0 against Hi: <g0, UT>X*><X > 0.



Unregularized hypothesis testing

> For ¢ € ran T*, construct unregularized test
Vo(Y) ==Ly, 00)>c
using probe element ®¢ € ) such that
o= T .

» Critical value ¢p can be chosen such that Wy has prescribed
level of significance a € (0, 1).

» W, has certain optimality properties [Proksch, Werner, Munk
2018].



Problems and solutions

Drawbacks
1. Unregularized test Wy not defined for ¢ ¢ ran T*.
2. Probe element ®g is solution to ill-posed equation

T*‘DO = Q.

As a consequence, power of Wy can be arbitrarily close to
level a.

Our contribution

We resolve both of these issues by maximizing the power among a
class of level-a tests based upon linear estimators.



Structure

Optimal regularized hypothesis testing



A class of level-ar tests

» Consider test
W¢(Y) = 1<Y,¢)>c

with arbitrary probe element ¢ € V.

Assumptions

There exists a pair (V, V') of Banach spaces such that

[y

(V. V) s S VI vy forall v e VN X, v e V' N X%,
2. ut € VN X with ||uT]), <1,

3. ranT*CV and T*: Y — V' is bounded,

4. p €ran T*.

» For any ® € Y, critical value ¢ can be chosen such that Vg
has at most level o € (0, 1) under these assumptions.



Optimal regularized hypothesis testing

» For any ® € Y\ {0}, V¢ has power

IT*® — ol — (Tul, ®) )
P [Vo(Y)=1] = N v Y
uT[ ‘b( ) ] Q<qa O_”q)Hy

where Q and ¢/ are the cdf and a-quantile of A/(0, 1).

» Find optimal probe element &' as minimizer of JJT}UT,

T*0 — o, — (Tul, ®
2 (@) = I Pl = (Tu', @)y
@1y

Then Vg has maximal power among {V¢ : ¢ € V}.

Problem

In practice u' is unknown, so JY . is unaccessible.
Tut
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Adaptive hypothesis testing

» Choose probe element ¢ as minimizer of Jé,

T — , — (Y, ).
Jé(CD) — | SOHV ( >z X Z

1]z ’
where Z C Y is dense continuously embedded subspace such
that data Y is bounded linear functional on Z.

» Use two independent samples Y7 and Y> of data, one to
construct test, another to evaluate test on.

» Define adaptive test

V(Y Vi) = Vo (Ya) if J\Z,’1 has global minimizer ® € Z,
> o0 otherwise.

Then WU* has level «.



Computability

» Define convex surrogate functional j$ Z xR =R,
JE(e,s) =T e~ 5ol —(Y,€ zr 5
> If (e,s) € Z x R is solution to
min JZ (e, s) subject to e[z <1, s>0
with e # 0, s > 0, then
®=sle

is global minimizer of JZ.
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Numerical simulations: Deconvolution

» Consider convolution operator Tu = hx uon X =) = L2(R)
with kernel h € L}(R) given by

(Fh)(E) = (1+ 0.000952)_2 for all € € R.
» Question: Is supp uf N[0, /] = 07
» Choose

V:=LYR), V :=L®R), Z=H"YR).
» Choose critical value of all tests such that level is

a =0.1.



Considered scenarios

Choose ¢ and uf as S-kernels.

(S1) Compatible smooth scenario

(S52) Compatible nonsmooth scenario

(S3) Incompatible smooth scenario
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Figure: The function ¢ (——) and the truth uf (—).
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Results — compatible smooth scenario (S1)
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Figure: Exact power of unregularized test (——), optimal test (), and
empirical power of adaptive test (——) based upon 100 samples.



Results — compatible nonsmooth scenario (S2)
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Figure: Exact power of unregularized test (——), optimal test (), and
empirical power of adaptive test (——) based upon 100 samples.



Results — incompatible smooth scenario (S3)
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Figure: Exact power of unregularized test (——), optimal test (), and
empirical power of adaptive test (——) based upon 100 samples.



Conclusion

» For given feature ¢ € ran T*, optimal level-a test based upon
linear estimator exists under a priori assumptions on uf.

P Adaptive test can be constructed by solving constrained convex
optimization problem.

> Adaptive test allows testing of features for which unregularized
testing is unfeasable due to ill-posedness.

Outlook

» Study power of adaptive test for other problems.
» Tikhonov-regularized hypothesis testing
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