Generalised Modes in Bayesian Inverse Problems

Christian Clason¹ Tapio Helin² **Remo Kretschmann**² Petteri Piiroinen³

¹Faculty of Mathematics, University of Duisburg-Essen

²School of Engineering Science, Lappeenranta-Lahti University of Technology

³Department of Mathematics and Statistics, University of Helsinki

Inverse Days Jyväskylä, 16. December 2019

Focus

 Maximum a posteriori (MAP) estimators in Bayesian inverse problems

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 Nonparametric setting: Unknown quantity is modelled as element of infinite-dimensional space.

Bayesian inverse problems

Reconstruct unknown quantity x from indirect noisy measurement y, where

$$y=F(x)+\eta.$$

- Probability distribution is assigned to unknown quantity (Prior distribution).
- Conditional distribution of unknown quantity, given measured data, is inferred using Bayes's formula (Posterior distribution).

Obtain point estimates from this distribution, e.g., MAP estimates (modes of posterior distribution).

Nonparametric MAP estimates

- Define MAP estimate as infinite-dimensional object with certain optimality properties that describe its relation to posterior distribution.
- MAP estimate can be approximated numerically, while optimality properties are independent of chosen discretisation.
- Defining and establishing those optimality properties rigorously is more challenging in infinite-dimensional spaces.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

There are cases where common approach fails.

Bayesian inference in finite-dimensional spaces

- If prior distribution has density x → exp(-R(x)) w.r.t. Lebesgue measure and
- conditional distribution of y given x has density $y \mapsto \exp(-\Phi(x; y))$,
- then conditional distribution of x given y, according to Bayes's formula, has density

$$x \mapsto \frac{1}{Z} \exp(-\Phi(x; y)) \exp(-R(x)).$$

Example

For inverse problems with white Gaussian noise we have

$$\Phi(x; y) = \frac{1}{2} \|F(x) - y\|^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Modes

- Modes of probability measure on finite-dimensional space are typically defined as maximisers of its density w.r.t. Lebesgue measure.
- Modes of posterior distribution are given as minimisers of

$$x \mapsto \Phi(x; y) + R(x).$$

Problem: There exists no Lebesgue measure on infinite-dimensional separable Banach spaces.

For this reason, modes in infinite-dimensional spaces are typically defined via asymptotic small ball probabilities [Dashti, Law, Stuart, and Voss 2013; Lie and Sullivan 2018].

Modes in infinite-dimensional spaces

Let μ be a Borel probability measure on a separable Banach space X.

Definition

A point $\hat{x} \in X$ is called a **(strong) mode** of μ if

$$\lim_{\delta o 0} rac{\mu(B^{\delta}(\hat{x}))}{\sup_{x \in X} \mu(B^{\delta}(x))} = 1,$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

where $B^{\delta}(x)$ denotes the open ball around $x \in X$ with radius δ .

Problems with definition of modes

Example (measure without mode)

The probability measure μ on $\mathbb R$ with Lebesgue density

$$p(x) = \begin{cases} 2(1-x), & \text{if } x \in [0,1], \\ 0, & \text{otherwise.} \end{cases}$$

does not have a mode in 0, since

$$\lim_{\delta \to 0} \frac{\mu(B^{\delta}(0))}{\sup_{x \in \mathbb{R}} \mu(B^{\delta}(x))} = \lim_{\delta \to 0} \frac{\mu(B^{\delta}(0))}{\mu(B^{\delta}(\delta))} = \frac{1}{2}$$

There are applications where **strict bounds** on the admissible values of the unknown x emerge in a natural way, e.g.,

- radiography,
- electrical impedance tomography.

Such bounds can translate into **discontinuities** of the **posterior distribution**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bayesian inference in infinite-dimensional spaces

• **Prior distribution** μ_0 on separable Banach space *X*.

If there exists reference measure *ν* (e.g., noise distribution) such that for all *x* ∈ *X*, conditional distribution of *y* given *x* has density

$$y \mapsto \exp(-\Phi(x;y))$$

w.r.t. ν ,

then conditional distribution of x given y has the form

$$\mu^{y}(\mathsf{d} x) = \frac{1}{Z} \exp(-\Phi(x; y))\mu_{0}(\mathsf{d} x)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

according to Bayes's formula.

Under certain conditions, **modes** of **posterior distribution** are precisely **minimisers** of functional

$$I(x) = \Phi(x; y) + R(x)$$

in case of **Gaussian prior** [Dashti, Law, Stuart, and Voss 2013; Kretschmann 2019] or **Besov prior** [Agapiou, Burger, Dashti, and Helin 2018].

Goals

- 1. Extend definition of modes and thereby of MAP estimates in nonparametric Bayesian inference to cover cases where previous approach fails.
- Show that our definition coincides with the previous one for a number of commonly used prior measures and find general conditions for coincidence.
- 3. Show that **generalised MAP estimates** are given as **minimisers** of canonical objective functional for **posterior distributions** with **discontinuities**.
- 4. Show **consistency** of generalised MAP estimator for **Bayesian inverse problems**.

Generalised modes

Idea: Replace fixed center point \hat{x} in definition of mode by sequence of center points $\{w_{\delta}\}_{\delta>0}$ that converges to \hat{x} as $\delta \to 0$.

Let μ be a Borel probability measure on a separable Banach space X.

Definition

A point $\hat{x} \in X$ is called a **generalised mode** of μ if for every positive sequence $\{\delta_n\}_{n\in\mathbb{N}}$ with $\delta_n \to 0$ there exists a sequence $\{w_n\}_{n\in\mathbb{N}} \subset X$ such that $w_n \to \hat{x}$ in X and

$$\lim_{n\to\infty}\frac{\mu(B^{\delta_n}(w_n))}{\sup_{x\in X}\mu(B^{\delta_n}(x))}=1.$$

We call such a sequence $\{w_n\}_{n \in \mathbb{N}}$ an **approximating sequence**.

Generalised modes

Examples

- In the previous example, x̂ := 0 is a generalised mode with w_n := δ_n.
- For Gaussian measures, the strong mode is the only generalised mode.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Criteria for coincidence of strong and generalised modes

When is a generalised mode \hat{x} a strong mode?

- 1. Fundamental criterion.
- 2. Criterion using **convergence rate** of approximating sequence $\{w_n\}$.
- 3. Criterion using **convergence** of approximating sequence $\{w_n\}$ in subspace topology.

Variational characterisation of GMAP estimates

- Goal: Characterise generalised modes of posterior distributions which display discontinuities as minimisers of appropriate objective functional.
- ► Specifically, consider prior in separable subspace of ℓ[∞] with strictly bounded and uniformly distributed components.
- For this prior distribution, strong and generalised modes do not coincide.

Prior distribution

• Let $\{\gamma_k\}_{k\in\mathbb{N}}$ be a sequence of weights with

 $\gamma_k \ge 0$ and $\gamma_k \to 0$ as $k \to \infty$.

Let ξ be a random variable with values in

$$X := \{x \in \ell^{\infty} : \lim_{k \to \infty} x_k = 0\} \subset \ell^{\infty}$$

whose components ξ_k are independent and each uniformly distributed on the interval $[-\gamma_k, \gamma_k]$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

Let \mathcal{U}_E denote the **probability distribution** of ξ .

Strong and generalised modes of \mathcal{U}_E

Theorem

If there is an $m \in \mathbb{N}$ with

$$|\mathbf{x}_{m}|=\gamma_{m}>\mathbf{0},$$

then $x \in X$ is **not** a strong mode of \mathcal{U}_E .

Theorem

A point $x \in X$ is a **generalised mode** of \mathcal{U}_E if and only if

 $|x_k| \leq \gamma_k$ for all $k \in \mathbb{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Set-up

Assumptions

1. Prior distribution $\mu_0 := \mathcal{U}_E$ on

$$X = \Big\{ x \in \ell^{\infty} : \lim_{k \to \infty} x_k = 0 \Big\}.$$

2. For given data y, posterior distribution μ^y on X is given by

$$\mu^{\gamma}(\mathsf{d} x) = \frac{1}{Z} \exp(-\Phi(x))\mu_0(\mathsf{d} x).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Objective functional

Conjecture

Generalised modes of μ^{y} can be characterised as **minimisers** of $\Phi: X \to \mathbb{R}$ in

$$E := \{ x \in X : |x_k| \le \gamma_k \text{ for all } k \in \mathbb{N} \}.$$

This is equivalent to **minimising** $I: X \to \mathbb{R} \cup \{\infty\}$,

$$I(x) := \Phi(x) + \iota_E(x),$$

where $\iota_{\textit{E}}$ denotes the indicator function

$$\iota_E(x) := \begin{cases} 0 & \text{if } x \in E, \\ \infty & \text{otherwise.} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Variational characterisation of GMAP estimates

Assumption

The function $\Phi: X \to \mathbb{R}$ is **Lipschitz continuous on bounded** sets, i.e., for every r > 0, there exists $L_r > 0$ such that

$$|\Phi(x_1) - \Phi(x_2)| \leq L_r \|x_1 - x_2\|_X \quad \text{for all } x_1, x_2 \in B^r(0).$$

Theorem

A point $\hat{x} \in X$ is a **generalised mode** of μ^{y} if and only if it is a **minimiser** of $I: X \to \mathbb{R} \cup \{\infty\}$,

$$I(x) := \Phi(x) + \iota_E(x).$$

Here, **generalised MAP estimator** corresponds to **Ivanov regularisation** with compact set *E*.

Set-up for consistency of generalised MAP estimator

Bayesian inverse problems

Governed by ill-posed operator equation

$$y=F(x)+\varepsilon\eta.$$

- 1. Finite-dimensional data $y \in \mathbb{R}^d$.
- 2. Additive Gaussian noise, $\eta \sim \mathcal{N}(0, \Sigma)$, noise level $\varepsilon > 0$.
- 3. Prior distribution $\mu_0 := \mathcal{U}_E$ on $X := \{x \in \ell^\infty : \lim_{k \to \infty} x_k = 0\}.$
- 4. Posterior distribution

$$\mu^{y}(\mathrm{d}x) = \frac{1}{Z} \exp\left(-\frac{1}{2\varepsilon^{2}}\left\|\Sigma^{-\frac{1}{2}}(F(x)-y)\right\|^{2}\right) \mu_{0}(\mathrm{d}x).$$
$$=\Phi(x)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Set-up

Goal: Show **consistency** of generalised MAP estimator in **small noise limit** and **frequentist set-up**.

Assumptions

- 1. True solution $x^{\dagger} \in X$ exists.
- 2. Sequence $\{y_n\}_{n\in\mathbb{N}}$ of measurements, given by

$$y_n = F(x^{\dagger}) + \varepsilon_n \eta_n.$$

3.
$$\varepsilon_n \to 0$$
 as $n \to \infty$.
4. $\eta_n \sim \mathcal{N}(0, \Sigma)$ are i.i.d. Gaussian random variables

For every $n \in \mathbb{N}$, let $x_n \in X$ be a **minimiser** of

$$I_n(x) := \frac{1}{2\varepsilon_n^2} \left\| \Sigma^{-\frac{1}{2}} (F(x) - y_n) \right\|^2 + \iota_E(x).$$

Consistency

Theorem

Suppose that $x^{\dagger} \in E$ and that F is **closed**. Then $\{x_n\}_{n \in \mathbb{N}}$ contains a **convergent subsequence** whose limit $\bar{x} \in X$ satisfies

 $F(\bar{x}) = F(x^{\dagger})$ almost surely.

Corollary

If, in addition, F is **injective**, then

 $x_n \to x^{\dagger}$ in probability as $n \to \infty$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conclusion

- We have established conditions for the coincidence of strong modes and generalised modes.
- For priors with strictly bounded and uniformly distributed components, generalised MAP estimates are given as minimisers of a canonical objective functional.
- The generalised MAP estimator based upon such priors is consistent for nonlinear inverse problems with additive Gaussian noise.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

- C. Clason, T. Helin, R. Kretschmann, and P. Piiroinen. Generalized modes in Bayesian inverse problems. *SIAM/ASA Journal on Uncertainty Quantification*, 7(2):625–684, 2019.
- M. Dashti, K. J. Law, A. M. Stuart, and J. Voss. MAP estimators and their consistency in Bayesian nonparametric inverse problems. *Inverse Problems*, 29(9):095017, 2013.
 - R. Kretschmann.
 - Nonparametric Bayesian inverse problems with Laplacian noise. Doctoral thesis, Universität Duisburg-Essen, 2019.
- S. Agapiou, M. Burger, M. Dashti, and T. Helin.
 Sparsity-promoting and edge-preserving maximum a posteriori estimators in non-parametric Bayesian inverse problems.
 Inverse Problems, 34(4):045002, 2018.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・