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Focus

» Maximum a posteriori (MAP) estimators in Bayesian inverse
problems

» Nonparametric setting: Unknown quantity is modelled as
element of infinite-dimensional space.



Bayesian inverse problems

» Reconstruct unknown quantity x from indirect noisy
measurement y, where

y=F(x)+n.

» Probability distribution is assigned to unknown quantity (Prior
distribution).

» Conditional distribution of unknown quantity, given measured
data, is inferred using Bayes's formula (Posterior
distribution).

» Obtain point estimates from this distribution, e.g., MAP
estimates (modes of posterior distribution).



Nonparametric MAP estimates

» Define MAP estimate as infinite-dimensional object with
certain optimality properties that describe its relation to
posterior distribution.

> MAP estimate can be approximated numerically, while
optimality properties are independent of chosen
discretisation.

» Defining and establishing those optimality properties rigorously
is more challenging in infinite-dimensional spaces.

» There are cases where common approach fails.



Bayesian inference in finite-dimensional spaces

» If prior distribution has density x — exp(—R(x)) w.r.t.
Lebesgue measure and

» conditional distribution of y given x has density
y = exp(=(x; y)),

» then conditional distribution of x given y, according to
Bayes’s formula, has density

x5 2 exp(~0(x.)) exp(~R(x)).

Example

For inverse problems with white Gaussian noise we have

O y) = I Fx) ~ yP.



Modes

> Modes of probability measure on finite-dimensional space
are typically defined as maximisers of its density w.r.t.
Lebesgue measure.

» Modes of posterior distribution are given as minimisers of
x = ®O(x;y) + R(x).

Problem: There exists no Lebesgue measure on infinite-dimensional
separable Banach spaces.

» For this reason, modes in infinite-dimensional spaces are
typically defined via asymptotic small ball probabilities
[Dashti, Law, Stuart, and Voss 2013; Lie and Sullivan 2018].



Modes in infinite-dimensional spaces

Let 1 be a Borel probability measure on a separable Banach space

X.
Definition
A point X € X is called a (strong) mode of  if
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where B%(x) denotes the open ball around x € X with radius ¢.



Problems with definition of modes

Example (measure without mode)

The probability measure i on R with Lebesgue density

() = {2(1 —x), ifxelo0,1],

0, otherwise.
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does not have a mode in 0, since
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Practical relevance

There are applications where strict bounds on the admissible
values of the unknown x emerge in a natural way, e.g.,

» radiography,
P electrical impedance tomography.

Such bounds can translate into discontinuities of the posterior
distribution.



Bayesian inference in infinite-dimensional spaces

» Prior distribution py on separable Banach space X.

> If there exists reference measure v (e.g., noise distribution)
such that for all x € X, conditional distribution of y given
x has density
y = exp(=®(x;y))

w.r.t. v,

> then conditional distribution of x given y has the form

1 (dx) = 5 exp(~(xi ) o(dx)

according to Bayes’s formula.



Variational characterisation of MAP estimates

Under certain conditions, modes of posterior distribution are
precisely minimisers of functional

I(x) = ®(x;y) + R(x)

in case of Gaussian prior [Dashti, Law, Stuart, and Voss 2013;
Kretschmann 2019] or Besov prior [Agapiou, Burger, Dashti, and
Helin 2018].



Goals

. Extend definition of modes and thereby of MAP estimates

in nonparametric Bayesian inference to cover cases where
previous approach fails.

. Show that our definition coincides with the previous one for a

number of commonly used prior measures and find general
conditions for coincidence.

. Show that generalised MAP estimates are given as

minimisers of canonical objective functional for posterior
distributions with discontinuities.

. Show consistency of generalised MAP estimator for Bayesian

inverse problems.



Generalised modes

Idea: Replace fixed center point X in definition of mode by
sequence of center points {w;}s~( that converges to X as § — 0.

Let i be a Borel probability measure on a separable Banach space
X.

Definition
A point X € X is called a generalised mode of y if for every

positive sequence {dp}nen With 0, — O there exists a sequence
{Wn}neny C X such that w, — X in X and

lim ( (o n)) =1.

n00 supye x i(B%(x))

We call such a sequence {w,},cn an approximating sequence.



Generalised modes

Examples

» In the previous example, X := 0 is a generalised mode with
Wp = 0,.

» For Gaussian measures, the strong mode is the only generalised
mode.



Criteria for coincidence of strong and generalised modes

When is a generalised mode % a strong mode?

1. Fundamental criterion.

2. Criterion using convergence rate of approximating sequence

{wan}.

3. Criterion using convergence of approximating sequence {w,}
in subspace topology.



Variational characterisation of GMAP estimates

» Goal: Characterise generalised modes of posterior
distributions which display discontinuities as minimisers of
appropriate objective functional.

» Specifically, consider prior in separable subspace of £°° with
strictly bounded and uniformly distributed components.

» For this prior distribution, strong and generalised modes do
not coincide.



Prior distribution

» Let {7« }ken be a sequence of weights with
Y >0 and ¢ — 0 as k — co.
> Let £ be a random variable with values in
X = 22 i =0} ce~
{xe Jim }

whose components £, are independent and each uniformly
distributed on the interval [—vy, k]

Definition
Let UE denote the probability distribution of .



Strong and generalised modes of Ug

Theorem
If there is an m € N with

’Xm| = Tm > 07

then x € X is not a strong mode of UE.

Theorem
A point x € X is a generalised mode of Ug if and only if

|xk| < vk forall k € N.



Set-up

Assumptions

1. Prior distribution pg := Ug on
— oo H —
X={xere: Jim =0}.
2. For given data y, posterior distribution 1Y on X is given by

(%) = — exp(—®(x))pio(dx).



Objective functional

Conjecture

Generalised modes of ;¥ can be characterised as minimisers of
®: X —>Rin

E:={x e X:|xk| <~ for all k e N}.

This is equivalent to minimising /: X — R U {oc},
I(x) := &(x) + te(x),

where g denotes the indicator function

(x) 0 ifxeeE,
Le(x) =
E oo otherwise.



Variational characterisation of GMAP estimates

Assumption

The function ®: X — R is Lipschitz continuous on bounded
sets, i.e., for every r > 0, there exists L, > 0 such that

|¢(X1) = (D(X2)| < L,||X1 = X2||X for all x1,xp € Br(O)

Theorem

A point X € X is a generalised mode of ” if and only if it is a
minimiser of /: X - RU {0},

I(x) = ®(x) + te(x).

Here, generalised MAP estimator corresponds to lvanov
regularisation with compact set E.



Set-up for consistency of generalised MAP estimator

Bayesian inverse problems
Governed by ill-posed operator equation
y =F(x)+en.

1. Finite-dimensional data y € RY.

2. Additive Gaussian noise, 7 ~ N(0,X), noise level ¢ > 0.

3. Prior distribution pg :=Ug on X := {x € £*°: lim xx = 0}.
k—00
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. Posterior distribution

w(dx) = o0 (= 5z [ HF) ~ )| Jnolex)

=d(x)




Set-up

Goal: Show consistency of generalised MAP estimator in small
noise limit and frequentist set-up.

Assumptions
1. True solution x' € X exists.
2. Sequence {y,}ncn of measurements, given by
Yn = F(XT) + enMn-
3. e, —>0as n— co.
4. np ~N(0,X) are i.i.d. Gaussian random variables.
For every n € N, let x, € X be a minimiser of

1

() = 5 [E 3G — )|+ elx).




Consistency

Theorem

Suppose that x! € E and that F is closed. Then {x,},cn contains
a convergent subsequence whose limit x € X satisfies

F(x) = F(x") almost surely.

Corollary

If, in addition, F is injective, then

xn — x| in probability as n — .



Conclusion

» We have established conditions for the coincidence of strong
modes and generalised modes.

» For priors with strictly bounded and uniformly distributed
components, generalised MAP estimates are given as
minimisers of a canonical objective functional.

» The generalised MAP estimator based upon such priors is
consistent for nonlinear inverse problems with additive
Gaussian noise.
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