Generalised Modes in Bayesian Inverse Problems

Christian Clason\(^1\) Tapio Helin\(^2\) Remo Kretschmann\(^2\) Petteri Piiroinen\(^3\)

\(^1\)Faculty of Mathematics, University of Duisburg-Essen
\(^2\)School of Engineering Science, Lappeenranta-Lahti University of Technology
\(^3\)Department of Mathematics and Statistics, University of Helsinki

Inverse Days
Jyväskylä, 16. December 2019
Focus

- Maximum a posteriori (MAP) estimators in Bayesian inverse problems

- Nonparametric setting: Unknown quantity is modelled as element of infinite-dimensional space.
Bayesian inverse problems

- Reconstruct **unknown quantity** x from indirect **noisy measurement** y, where

$$y = F(x) + \eta.$$

- Probability distribution is assigned to unknown quantity (**Prior distribution**).

- Conditional distribution of unknown quantity, given measured data, is inferred using Bayes’s formula (**Posterior distribution**).

- Obtain point estimates from this distribution, e.g., **MAP estimates** (modes of posterior distribution).
Nonparametric MAP estimates

- Define MAP estimate as **infinite-dimensional object** with certain **optimality properties** that describe its relation to posterior distribution.
- MAP estimate can be **approximated numerically**, while optimality properties are **independent of chosen discretisation**.
- Defining and establishing those optimality properties rigorously is **more challenging** in infinite-dimensional spaces.
- There are cases where **common approach fails**.
Bayesian inference in finite-dimensional spaces

- If **prior distribution** has density $x \mapsto \exp(-R(x))$ w.r.t. Lebesgue measure and
- **conditional distribution of** y **given** x **has density** $y \mapsto \exp(-\Phi(x; y))$,
- then **conditional distribution of** x **given** y, according to **Bayes’s formula**, has density

$$x \mapsto \frac{1}{Z} \exp(-\Phi(x; y)) \exp(-R(x)).$$

Example

For **inverse problems** with **white Gaussian noise** we have

$$\Phi(x; y) = \frac{1}{2} \| F(x) - y \|^2.$$
Modes

- **Modes** of probability measure on **finite-dimensional space** are typically defined as **maximisers** of its **density** w.r.t. Lebesgue measure.

- **Modes** of **posterior distribution** are given as **minimisers** of $x \mapsto \Phi(x; y) + R(x)$.

Problem: There exists no Lebesgue measure on infinite-dimensional separable Banach spaces.

- For this reason, **modes** in **infinite-dimensional spaces** are typically defined via **asymptotic small ball probabilities** [Dashti, Law, Stuart, and Voss 2013; Lie and Sullivan 2018].
Modes in infinite-dimensional spaces

Let \(\mu \) be a Borel probability measure on a separable Banach space \(X \).

Definition

A point \(\hat{x} \in X \) is called a **(strong) mode** of \(\mu \) if

\[
\lim_{\delta \to 0} \frac{\mu(B_\delta(\hat{x}))}{\sup_{x \in X} \mu(B_\delta(x))} = 1,
\]

where \(B_\delta(x) \) denotes the open ball around \(x \in X \) with radius \(\delta \).
Problems with definition of modes

Example (measure without mode)

The probability measure μ on \mathbb{R} with Lebesgue density

$$p(x) = \begin{cases} 2(1 - x), & \text{if } x \in [0, 1], \\ 0, & \text{otherwise}. \end{cases}$$

does not have a mode in 0, since

$$\lim_{\delta \to 0} \frac{\mu(B^{\delta}(0))}{\sup_{x \in \mathbb{R}} \mu(B^{\delta}(x))} = \lim_{\delta \to 0} \frac{\mu(B^{\delta}(0))}{\mu(B^{\delta}(\delta))} = \frac{1}{2}.$$
There are applications where strict bounds on the admissible values of the unknown x emerge in a natural way, e.g.,

- radiography,
- electrical impedance tomography.

Such bounds can translate into discontinuities of the posterior distribution.
Bayesian inference in infinite-dimensional spaces

- **Prior distribution** μ_0 on separable Banach space X.

- If there exists **reference measure** ν (e.g., noise distribution) such that for all $x \in X$, **conditional distribution of y given x** has density

 $$y \mapsto \exp(-\Phi(x; y))$$

 w.r.t. ν,

- then **conditional distribution of x given y** has the form

 $$\mu^y(dx) = \frac{1}{Z} \exp(-\Phi(x; y))\mu_0(dx)$$

 according to **Bayes’s formula**.
Under certain conditions, \textbf{modes} of \textit{posterior distribution} are precisely \textbf{minimisers} of functional

\[I(x) = \Phi(x; y) + R(x) \]

in case of \textbf{Gaussian prior} [Dashti, Law, Stuart, and Voss 2013; Kretschmann 2019] or \textbf{Besov prior} [Agapiou, Burger, Dashti, and Helin 2018].
Goals

1. **Extend definition** of **modes** and thereby of **MAP estimates** in **nonparametric Bayesian inference** to cover cases where previous approach fails.

2. Show that our definition **coincides** with the previous one for a number of **commonly used prior measures** and find general **conditions** for coincidence.

3. Show that **generalised MAP estimates** are given as **minimisers** of canonical objective functional for **posterior distributions** with **discontinuities**.

4. Show **consistency** of generalised MAP estimator for **Bayesian inverse problems**.
Generalised modes

Idea: Replace fixed center point \(\hat{x} \) in definition of mode by sequence of center points \(\{w_\delta\}_{\delta>0} \) that converges to \(\hat{x} \) as \(\delta \to 0 \).

Let \(\mu \) be a Borel probability measure on a separable Banach space \(X \).

Definition

A point \(\hat{x} \in X \) is called a **generalised mode** of \(\mu \) if for every positive sequence \(\{\delta_n\}_{n \in \mathbb{N}} \) with \(\delta_n \to 0 \) there exists a sequence \(\{w_n\}_{n \in \mathbb{N}} \subset X \) such that \(w_n \to \hat{x} \) in \(X \) and

\[
\lim_{n \to \infty} \frac{\mu(B_{\delta_n}(w_n))}{\sup_{x \in X} \mu(B_{\delta_n}(x))} = 1.
\]

We call such a sequence \(\{w_n\}_{n \in \mathbb{N}} \) an **approximating sequence**.
Generalised modes

Examples

▶ In the previous example, $\hat{x} := 0$ is a generalised mode with $w_n := \delta_n$.

▶ For Gaussian measures, the strong mode is the only generalised mode.
Criteria for coincidence of strong and generalised modes

When is a generalised mode \hat{x} a strong mode?

1. Fundamental criterion.

2. Criterion using convergence rate of approximating sequence $\{w_n\}$.

3. Criterion using convergence of approximating sequence $\{w_n\}$ in subspace topology.
Variational characterisation of GMAP estimates

- **Goal:** Characterise generalised modes of posterior distributions which display discontinuities as minimisers of appropriate objective functional.

- Specifically, consider prior in separable subspace of ℓ^∞ with strictly bounded and uniformly distributed components.

- For this prior distribution, strong and generalised modes do not coincide.
Prior distribution

Let \(\{ \gamma_k \}_{k \in \mathbb{N}} \) be a sequence of weights with
\[
\gamma_k \geq 0 \quad \text{and} \quad \gamma_k \to 0 \quad \text{as} \quad k \to \infty.
\]

Let \(\xi \) be a random variable with values in
\[X := \{ x \in \ell^\infty : \lim_{k \to \infty} x_k = 0 \} \subset \ell^\infty\]
whose components \(\xi_k \) are independent and each uniformly distributed on the interval \([-\gamma_k, \gamma_k]\).

Definition

Let \(\mathcal{U}_E \) denote the probability distribution of \(\xi \).
Strong and generalised modes of \mathcal{U}_E

Theorem

If there is an $m \in \mathbb{N}$ with

$$|x_m| = \gamma_m > 0,$$

then $x \in X$ is **not a strong mode** of \mathcal{U}_E.

Theorem

A point $x \in X$ is a **generalised mode** of \mathcal{U}_E if and only if

$$|x_k| \leq \gamma_k \quad \text{for all } k \in \mathbb{N}.$$
Set-up

Assumptions

1. **Prior distribution** \(\mu_0 := \mathcal{U}_E \) on

\[
 X = \left\{ x \in \ell^\infty : \lim_{k \to \infty} x_k = 0 \right\}.
\]

2. For given **data** \(y \), **posterior distribution** \(\mu^y \) on \(X \) is given by

\[
 \mu^y(dx) = \frac{1}{Z} \exp(-\Phi(x)) \mu_0(dx).
\]
Generalised modes of μ^y can be characterised as minimisers of $\Phi: X \to \mathbb{R}$ in

$$E := \{ x \in X : |x_k| \leq \gamma_k \text{ for all } k \in \mathbb{N} \}.$$

This is equivalent to minimizing $I: X \to \mathbb{R} \cup \{\infty\}$,

$$I(x) := \Phi(x) + \iota_E(x),$$

where ι_E denotes the indicator function

$$\iota_E(x) := \begin{cases} 0 & \text{if } x \in E, \\ \infty & \text{otherwise}. \end{cases}$$
Variational characterisation of GMAP estimates

Assumption

The function $\Phi: X \rightarrow \mathbb{R}$ is **Lipschitz continuous on bounded sets**, i.e., for every $r > 0$, there exists $L_r > 0$ such that

$$|\Phi(x_1) - \Phi(x_2)| \leq L_r \|x_1 - x_2\|_X \quad \text{for all } x_1, x_2 \in B^r(0).$$

Theorem

A point $\hat{x} \in X$ is a **generalised mode** of μ^y if and only if it is a **minimiser** of $I: X \rightarrow \mathbb{R} \cup \{\infty\}$,

$$I(x) := \Phi(x) + \nu_E(x).$$

Here, **generalised MAP estimator** corresponds to **Ivanov regularisation** with compact set E.
Set-up for consistency of generalised MAP estimator

Bayesian inverse problems

Governed by ill-posed operator equation

\[y = F(x) + \varepsilon \eta. \]

1. **Finite-dimensional data** \(y \in \mathbb{R}^d \).
2. **Additive Gaussian noise**, \(\eta \sim \mathcal{N}(0, \Sigma) \), noise level \(\varepsilon > 0 \).
3. Prior distribution \(\mu_0 := \mathcal{U}_E \) on \(X := \{ x \in \ell^\infty : \lim_{k \to \infty} x_k = 0 \} \).
4. Posterior distribution

\[
\mu^y(dx) = \frac{1}{Z} \exp \left(- \frac{1}{2\varepsilon^2} \left\| \Sigma^{-\frac{1}{2}} (F(x) - y) \right\|^2 \right) \mu_0(dx) = \Phi(x)
\]
Set-up

Goal: Show consistency of generalised MAP estimator in small noise limit and frequentist set-up.

Assumptions

1. **True solution** $x^\dagger \in X$ exists.
2. **Sequence** $\{y_n\}_{n \in \mathbb{N}}$ of measurements, given by

 $$y_n = F(x^\dagger) + \varepsilon_n \eta_n.$$

3. $\varepsilon_n \rightarrow 0$ as $n \rightarrow \infty$.
4. $\eta_n \sim \mathcal{N}(0, \Sigma)$ are i.i.d. Gaussian random variables.

For every $n \in \mathbb{N}$, let $x_n \in X$ be a **minimiser** of

$$I_n(x) := \frac{1}{2\varepsilon_n^2} \left\| \Sigma^{-\frac{1}{2}} (F(x) - y_n) \right\|^2 + \nu_E(x).$$
Consistency

Theorem

Suppose that $x^\dagger \in E$ and that F is closed. Then $\{x_n\}_{n \in \mathbb{N}}$ contains a convergent subsequence whose limit $\bar{x} \in X$ satisfies

$$F(\bar{x}) = F(x^\dagger)$$

almost surely.

Corollary

If, in addition, F is injective, then

$$x_n \to x^\dagger \text{ in probability as } n \to \infty.$$
Conclusion

- We have established conditions for the coincidence of strong modes and generalised modes.

- For priors with strictly bounded and uniformly distributed components, generalised MAP estimates are given as minimisers of a canonical objective functional.

- The generalised MAP estimator based upon such priors is consistent for nonlinear inverse problems with additive Gaussian noise.
References

