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Focus

I Maximum a posteriori (MAP) estimators in Bayesian inverse
problems

I Nonparametric setting: Unknown quantity is modelled as
element of infinite-dimensional space.



Bayesian inverse problems

I Reconstruct unknown quantity x from indirect noisy
measurement y , where

y = F (x) + η.

I Probability distribution is assigned to unknown quantity (Prior
distribution).

I Conditional distribution of unknown quantity, given measured
data, is inferred using Bayes’s formula (Posterior
distribution).

I Obtain point estimates from this distribution, e.g., MAP
estimates (modes of posterior distribution).



Nonparametric MAP estimates

I Define MAP estimate as infinite-dimensional object with
certain optimality properties that describe its relation to
posterior distribution.

I MAP estimate can be approximated numerically, while
optimality properties are independent of chosen
discretisation.

I Defining and establishing those optimality properties rigorously
is more challenging in infinite-dimensional spaces.

I There are cases where common approach fails.



Bayesian inference in finite-dimensional spaces
I If prior distribution has density x 7→ exp(−R(x)) w.r.t.

Lebesgue measure and
I conditional distribution of y given x has density

y 7→ exp(−Φ(x ; y)),
I then conditional distribution of x given y , according to

Bayes’s formula, has density

x 7→ 1
Z exp(−Φ(x ; y)) exp(−R(x)).

Example
For inverse problems with white Gaussian noise we have

Φ(x ; y) = 1
2‖F (x)− y‖2.



Modes

I Modes of probability measure on finite-dimensional space
are typically defined as maximisers of its density w.r.t.
Lebesgue measure.

I Modes of posterior distribution are given as minimisers of

x 7→ Φ(x ; y) + R(x).

Problem: There exists no Lebesgue measure on infinite-dimensional
separable Banach spaces.

I For this reason, modes in infinite-dimensional spaces are
typically defined via asymptotic small ball probabilities
[Dashti, Law, Stuart, and Voss 2013; Lie and Sullivan 2018].



Modes in infinite-dimensional spaces

Let µ be a Borel probability measure on a separable Banach space
X .
Definition
A point x̂ ∈ X is called a (strong) mode of µ if

lim
δ→0

µ(Bδ(x̂))
supx∈X µ(Bδ(x)) = 1,

where Bδ(x) denotes the open ball around x ∈ X with radius δ.



Problems with definition of modes

Example (measure without mode)
The probability measure µ on R with Lebesgue density

p(x) =
{
2(1− x), if x ∈ [0, 1],
0, otherwise.
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does not have a mode in 0, since

lim
δ→0

µ(Bδ(0))
supx∈R µ(Bδ(x)) = lim

δ→0

µ(Bδ(0))
µ(Bδ(δ)) = 1

2 .



Practical relevance

There are applications where strict bounds on the admissible
values of the unknown x emerge in a natural way, e.g.,
I radiography,
I electrical impedance tomography.

Such bounds can translate into discontinuities of the posterior
distribution.



Bayesian inference in infinite-dimensional spaces

I Prior distribution µ0 on separable Banach space X .
I If there exists reference measure ν (e.g., noise distribution)

such that for all x ∈ X , conditional distribution of y given
x has density

y 7→ exp(−Φ(x ; y))

w.r.t. ν,
I then conditional distribution of x given y has the form

µy (dx) = 1
Z exp(−Φ(x ; y))µ0(dx)

according to Bayes’s formula.



Variational characterisation of MAP estimates

Under certain conditions, modes of posterior distribution are
precisely minimisers of functional

I(x) = Φ(x ; y) + R(x)

in case of Gaussian prior [Dashti, Law, Stuart, and Voss 2013;
Kretschmann 2019] or Besov prior [Agapiou, Burger, Dashti, and
Helin 2018].



Goals

1. Extend definition of modes and thereby of MAP estimates
in nonparametric Bayesian inference to cover cases where
previous approach fails.

2. Show that our definition coincides with the previous one for a
number of commonly used prior measures and find general
conditions for coincidence.

3. Show that generalised MAP estimates are given as
minimisers of canonical objective functional for posterior
distributions with discontinuities.

4. Show consistency of generalised MAP estimator for Bayesian
inverse problems.



Generalised modes

Idea: Replace fixed center point x̂ in definition of mode by
sequence of center points {wδ}δ>0 that converges to x̂ as δ → 0.

Let µ be a Borel probability measure on a separable Banach space
X .

Definition
A point x̂ ∈ X is called a generalised mode of µ if for every
positive sequence {δn}n∈N with δn → 0 there exists a sequence
{wn}n∈N ⊂ X such that wn → x̂ in X and

lim
n→∞

µ(Bδn (wn))
supx∈X µ(Bδn (x)) = 1.

We call such a sequence {wn}n∈N an approximating sequence.



Generalised modes

Examples

I In the previous example, x̂ := 0 is a generalised mode with
wn := δn.

I For Gaussian measures, the strong mode is the only generalised
mode.



Criteria for coincidence of strong and generalised modes

When is a generalised mode x̂ a strong mode?

1. Fundamental criterion.

2. Criterion using convergence rate of approximating sequence
{wn}.

3. Criterion using convergence of approximating sequence {wn}
in subspace topology.



Variational characterisation of GMAP estimates

I Goal: Characterise generalised modes of posterior
distributions which display discontinuities as minimisers of
appropriate objective functional.

I Specifically, consider prior in separable subspace of `∞ with
strictly bounded and uniformly distributed components.

I For this prior distribution, strong and generalised modes do
not coincide.



Prior distribution

I Let {γk}k∈N be a sequence of weights with

γk ≥ 0 and γk → 0 as k →∞.

I Let ξ be a random variable with values in

X :=
{
x ∈ `∞ : lim

k→∞
xk = 0

}
⊂ `∞

whose components ξk are independent and each uniformly
distributed on the interval [−γk , γk ].

Definition
Let UE denote the probability distribution of ξ.



Strong and generalised modes of UE

Theorem
If there is an m ∈ N with

|xm| = γm > 0,

then x ∈ X is not a strong mode of UE .

Theorem
A point x ∈ X is a generalised mode of UE if and only if

|xk | ≤ γk for all k ∈ N.



Set-up

Assumptions

1. Prior distribution µ0 := UE on

X =
{
x ∈ `∞ : lim

k→∞
xk = 0

}
.

2. For given data y , posterior distribution µy on X is given by

µy (dx) = 1
Z exp(−Φ(x))µ0(dx).



Objective functional

Conjecture
Generalised modes of µy can be characterised as minimisers of
Φ: X → R in

E := {x ∈ X : |xk | ≤ γk for all k ∈ N}.

This is equivalent to minimising I: X → R ∪ {∞},

I(x) := Φ(x) + ιE (x),

where ιE denotes the indicator function

ιE (x) :=
{
0 if x ∈ E ,
∞ otherwise.



Variational characterisation of GMAP estimates

Assumption
The function Φ: X → R is Lipschitz continuous on bounded
sets, i.e., for every r > 0, there exists Lr > 0 such that

|Φ(x1)− Φ(x2)| ≤ Lr‖x1 − x2‖X for all x1, x2 ∈ Br (0).

Theorem
A point x̂ ∈ X is a generalised mode of µy if and only if it is a
minimiser of I: X → R ∪ {∞},

I(x) := Φ(x) + ιE (x).

Here, generalised MAP estimator corresponds to Ivanov
regularisation with compact set E .



Set-up for consistency of generalised MAP estimator

Bayesian inverse problems
Governed by ill-posed operator equation

y = F (x) + εη.

1. Finite-dimensional data y ∈ Rd .
2. Additive Gaussian noise, η ∼ N (0,Σ), noise level ε > 0.
3. Prior distribution µ0 := UE on X :=

{
x ∈ `∞ : lim

k→∞
xk = 0

}
.

4. Posterior distribution

µy (dx) = 1
Z exp

(
− 1

2ε2

∥∥∥Σ−
1
2 (F (x)− y)

∥∥∥2

︸ ︷︷ ︸
=Φ(x)

)
µ0(dx).



Set-up
Goal: Show consistency of generalised MAP estimator in small
noise limit and frequentist set-up.

Assumptions

1. True solution x † ∈ X exists.
2. Sequence {yn}n∈N of measurements, given by

yn = F (x †) + εnηn.

3. εn → 0 as n→∞.
4. ηn ∼ N (0,Σ) are i.i.d. Gaussian random variables.

For every n ∈ N, let xn ∈ X be a minimiser of

In(x) := 1
2ε2

n

∥∥∥Σ−
1
2 (F (x)− yn)

∥∥∥2
+ ιE (x).



Consistency

Theorem
Suppose that x † ∈ E and that F is closed. Then {xn}n∈N contains
a convergent subsequence whose limit x̄ ∈ X satisfies

F (x̄) = F (x †) almost surely.

Corollary
If, in addition, F is injective, then

xn → x † in probability as n→∞.



Conclusion

I We have established conditions for the coincidence of strong
modes and generalised modes.

I For priors with strictly bounded and uniformly distributed
components, generalised MAP estimates are given as
minimisers of a canonical objective functional.

I The generalised MAP estimator based upon such priors is
consistent for nonlinear inverse problems with additive
Gaussian noise.
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