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Set-up

Consider statistical linear inverse problem

Y = Tu† + σZ ,

where
▶ T : X → Y bounded linear forward operator between real

separable Hilbert spaces X and Y,
▶ u† ∈ X unknown quantity of interest,
▶ σ > 0 noise level,
▶ Z white Gaussian noise process on Y.

For each g ∈ Y one has access to real-valued Gaussian random
variable

⟨Y , g⟩ =
〈
Tu†, g

〉
Y

+ σ ⟨Z , g⟩ .



Estimation and inference of features

▶ X ,Y typically function spaces such as Lp(Ω) or Hs(Ω) on some
domain Ω ⊆ Rd .

▶ Often one is not interested in whole function u† but in certain
features of it such as modes, homogeneity, monotonicity, or
support.

▶ Many features can be described by (family of) bounded linear
functionals φ ∈ X ∗.

▶ We perform inference for such features by means of statistical
hypothesis testing. Specifically, we test

H0 :
〈
φ, u†

〉
X ∗×X

≤ 0 against H1 :
〈
φ, u†

〉
X ∗×X

> 0.



Example 1: Support inference in deconvolution

▶ T convolution operator

Tu = h ∗ u

on L2(R) with kernel h.
▶ Question: Is supp u† ∩ (a, b) = ∅?
▶ Under assumption that u† is nonnegative, φ := 1[a,b]

describes feature of interest〈
φ, u†

〉
L2

=
∫ b

a
u†(x)dx .



Example 2: Linearity inference

▶ Direct noisy measurement

Y = f † + σZ

of function f † ∈ H1
0 (0, 1) ∩ H2(0, 1).

▶ Question: Is f † linear on (a, b) ⊆ (0, 1)?
▶ For u ∈ L2(0, 1), let Tu = f be weak solution to

−f ′′ = u on (0, 1), f (0) = f (1) = 0.

▶ Under assumption that f † is concave, φ := 1[a,b] describes
feature of interest〈

φ, u†
〉

L2
= −

∫ b

a
(f †)′′(x)dx .



Statistical properties of hypothesis tests

▶ Hypothesis test Ψ(Y ) takes only values 0 (accepts) and 1
(rejects).

▶ Probability that test correctly rejects hypothesis H0 should
be large, i.e.,

Pu† [Ψ(Y ) = 1]

for u† ∈ X that satisfies H1 (power of test).
▶ Control probability that test falsely rejects hypothesis via

sup
{
Pu† [Ψ(Y ) = 1] : u† ∈ X satisfies H0

}
(level of significance of test).



Unregularized hypothesis testing

▶ Assume that φ ∈ ran T ∗ and choose Φ0 ∈ Y such that

T ∗Φ0 = φ.

▶ Then ⟨Y , Φ0⟩ is natural estimator for desired quantity

⟨φ, u†⟩X = ⟨T ∗Φ0, u†⟩X = ⟨Φ0, Tu†⟩Y .

▶ Define test
Ψ0(Y ) := 1⟨Y ,Φ0⟩ > c .

▶ Test Ψ0 has level α ∈ (0, 1) and power

Pu† [Ψ0(Y ) = 1] = Q
(

Q−1(α) + ⟨φ, u†⟩
σ ∥Φ0∥

)
,

for choice c := σ ∥Φ0∥ Q−1(1 − α), where Q is cdf of N (0, 1).



Problems

Unregularized test Ψ0 has two inherent limitations.
1. If φ /∈ ran T ∗, approach not applicable.
2. Probe element Φ0 is solution to ill-posed equation T ∗Φ0 = φ.

For certain features, norm of Φ0 is huge, and power of Ψ0 is
arbitrarily close to level.



Solutions

Both of these limitations can be overcome by regularized
hypothesis tests

ΨΦ,c(Y ) := 1⟨Y ,Φ⟩ > c , Φ ∈ Y, c ∈ R.

1. Maximize (empirical) power among class of regularized level
α tests [Kretschmann, Wachsmuth, Werner 2022].

2. Define tests using Bayesian approach: Reject based upon
posterior probabilities.

3. Choose probe element Φ as Tikhonov regularized solution to
equation T ∗Φ0 = φ.
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Bayesian set-up

Consider problem from Bayesian perspective,

Y = TU + σZ .

▶ Assign Gaussian prior distribution Π = N (m0, C0) to U,
▶ C0 symmetric, positive definite, trace class,
▶ U and Z independent.

Conditional distribution of U, given Y = y , almost surely Gaussian
N (m, C) with

C = σ2C
1
2

0

(
C

1
2

0 T ∗TC
1
2

0 + σ2Id
)−1

C
1
2

0 ,

m = m0 + C
1
2

0

(
C

1
2

0 T ∗TC
1
2

0 + σ2Id
)−1

C
1
2

0 T ∗(y − Tm0).



Maximum a posteriori testing

For φ ∈ X , define maximum a posteriori (MAP) test ΨMAP by

ΨMAP(y) :=
{

1 if P [⟨φ, U⟩ > 0|Y = y ] > P [⟨φ, U⟩ ≤ 0|Y = y ] ,

0 otherwise,

=
{

1 if P [⟨φ, U⟩ > 0|Y = y ] > 1
2 ,

0 otherwise.

▶ Hypothesis H0 needs to have positive prior probability.
▶ Conditional distribution of ⟨φ, U⟩X , given Y = y , is

N (⟨φ, m⟩X , ⟨φ, Cφ⟩X ) .



Evaluating MAP test

▶ Cdf Fφ of ⟨φ, U⟩X , given Y = y , is

Fφ(t) = P [⟨φ, U⟩ ≤ t|Y = y ] = Q
(

t − ⟨φ, m⟩
⟨φ, Cφ⟩1/2

)
,

where Q is cdf of N (0, 1).
▶ Hence

ΨMAP(y) = 1 ⇔ P [⟨φ, U⟩X > 0|Y = y ] >
1
2

⇔ Fφ(0) <
1
2 ⇔ ⟨φ, m⟩X > 0.



Connection with Tikhonov regularization

▶ We have

⟨φ, m⟩X = ⟨y , ΦMAP⟩ − ⟨m0, T ∗ΦMAP − φ⟩X ,

where

ΦMAP := TC
1
2

0

(
C

1
2

0 T ∗TC
1
2

0 + σ2Id
)−1

C
1
2

0 φ.

▶ If T is compact and C0 commutes with T ∗T , then ΦMAP is
minimizer of

Φ 7→ ∥T ∗Φ − φ∥2
X + σ2

∥∥∥∥C− 1
2

0 V ∗Φ
∥∥∥∥2

X
,

where V is a unitary operator such that T = V |T |.



Interpretation as regularized test

Theorem [Kretschmann, Wachsmuth, Werner 2022]
Under a priori assumptions on u†, for every φ ∈ ran T ∗, Φ ∈ Y , and
α ∈ (0, 1), rejection threshold c = c(φ, Φ, α) can be chosen such
that regularized test

ΨΦ,c(Y ) = 1⟨Y ,Φ⟩ > c

has level α for testing H0 against H1.

MAP test ΨMAP corresponds to regularized test ΨΦMAP,cMAP with
cMAP := ⟨m0, T ∗ΦMAP − φ⟩X and has level α if prior mean m0 is
chosen according to

⟨m0, T ∗ΦMAP − φ⟩X = c(φ, ΦMAP, α).



Optimality

Theorem [Kretschmann, Wachsmuth, Werner 2022]
For φ ∈ ran T ∗ and under a priori assumptions on u†, there exists
optimal probe element Φ† ∈ Y that maximizes power among all
regularized level α tests.

Theorem
If T is compact with singular system (τk , ek , fk)k∈N and if

⟨φ, ek⟩X = 0 for all k ∈ N with ⟨T ∗Φ†, ek⟩X = 0,

then prior covariance C0 can be chosen such that power of ΨMAP
is arbitrarily close to power of optimal regularized test
ΨΦ†,c(φ,Φ†,α).
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A priori assumptions on u†

Assumptions

1. Forward operator T is Hilbert–Schmidt and injective.
2. Spectral source condition

u† = (T ∗T )
ν
2 w , ∥w∥X ≤ ρ

for some w ∈ X and ν, ρ > 0.
3. Prior covariance operator

C0 = γ2(T ∗T )µ

for some γ > 0 and µ ≥ 1.



A priori choice of prior covariance

Theorem
If prior covariance is chosen as C0 = γ2

0σ2(T ∗T )µ with γ0 > 0 and
if µ > ν

2 − 1, then power of ΨMAP is at least

Pu† [ΨMAP(Y ) = 1] ≥ Q

Q−1(α) +
⟨φ,u†⟩

∥φ∥ − 2ργ
− ν

µ+1
0

σγ
1

µ+1
0

 .

▶ Nontrivial power if feature size is above threshold 2ργ
− ν

µ+1
0 .

▶ Choose γ0 to maximize estimate for specific feature size.



A posteriori choice of prior covariance

▶ MAP test ΨMAP has power

Pu† [ΨMAP(Y ) = 1] = Q
(

Q−1(α) − JTu†(ΦMAP(C0))
σ

)
,

where JTu† : Y → R [Kretschmann, Wachsmuth, Werner 2022].
▶ Functional JTu† unaccessible, use empirical functional JY

instead.
▶ Choose C0 = γ2(T ∗T )µ and γ > 0 as minimizer of

γ 7→ JY (ΦMAP(γ(T ∗T )µ)) + ω(log γ)2

with ω > 0.
▶ Due to dependence of ΦMAP on Y via γ, it is no longer

guaranteed that test has level α.



Numerical results – Deconvolution
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Figure: Exact power of unregularized test ( ), oracle MAP test ( ),
and empirical power and level of MAP test ( , ) for ν = 1, µ = 2,
α = 0.1, ω = 0.003, and M = 1000 samples.



Numerical results – Antiderivative problem
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Figure: Exact power of unregularized test ( ), oracle MAP test ( ),
and empirical power and level of MAP test ( , ) for ν = 1, µ = 2,
α = 0.1, ω = 0.01, and M = 1000 samples.



Conclusion

▶ MAP test based upon Gaussian prior can be evaluated via
Tikhonov–Phillips regularization.

▶ MAP test is defined for any feature described by bounded
linear functional φ ∈ X ∗.

▶ Regularizing effect allows feature testing in noise regimes
where unregularized testing is unfeasible.

Outlook
▶ Other choices of prior distribution.
▶ Further study of Tikhonov regularized tests.
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