Bayesian hypothesis testing in statistical inverse problems

Remo Kretschmann Frank Werner

Applied Inverse Problems Göttingen, 7 September 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Structure

Introduction

Maximum a posteriori testing

Definition and evaluation Interpretation as regularized test Optimality

Performance under spectral source condition

A priori and a posteriori choice of prior covariance Numerical results

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Set-up

Consider statistical linear inverse problem

$$Y = T u^{\dagger} + \sigma Z,$$

where

- T: X → Y bounded linear forward operator between real separable Hilbert spaces X and Y,
- $u^{\dagger} \in \mathcal{X}$ unknown quantity of interest,
- $\sigma > 0$ noise level,
- \blacktriangleright *Z* white Gaussian noise process on \mathcal{Y} .

For each $g \in \mathcal{Y}$ one has access to real-valued Gaussian random variable

$$\langle Y,g\rangle = \left\langle Tu^{\dagger},g\right\rangle_{\mathcal{Y}} + \sigma \left\langle Z,g\right\rangle.$$

Estimation and inference of features

- X, Y typically function spaces such as L^p(Ω) or H^s(Ω) on some domain Ω ⊆ ℝ^d.
- Often one is not interested in whole function u[†] but in certain features of it such as modes, homogeneity, monotonicity, or support.
- Many features can be described by (family of) bounded linear functionals φ ∈ X*.
- We perform inference for such features by means of statistical hypothesis testing. Specifically, we test

$$H_0: \left\langle arphi, u^{\dagger}
ight
angle_{\mathcal{X}^* imes \mathcal{X}} \leq 0 \quad ext{against} \quad H_1: \left\langle arphi, u^{\dagger}
ight
angle_{\mathcal{X}^* imes \mathcal{X}} > 0.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example 1: Support inference in deconvolution

T convolution operator

$$Tu = h * u$$

on $L^2(\mathbb{R})$ with kernel *h*.

- **Question:** Is supp $u^{\dagger} \cap (a, b) = \emptyset$?
- Under assumption that u[†] is nonnegative, φ := 1_[a,b] describes feature of interest

$$\left\langle \varphi, u^{\dagger} \right\rangle_{L^2} = \int_a^b u^{\dagger}(x) \mathrm{d}x.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example 2: Linearity inference

Direct noisy measurement

$$Y = f^{\dagger} + \sigma Z$$

of function $f^{\dagger} \in H^1_0(0,1) \cap H^2(0,1)$.

- Question: Is f^{\dagger} linear on $(a, b) \subseteq (0, 1)$?
- For $u \in L^2(0,1)$, let Tu = f be weak solution to

$$-f'' = u$$
 on $(0,1)$, $f(0) = f(1) = 0$.

Under assumption that f[†] is concave, φ := 1_[a,b] describes feature of interest

$$\left\langle \varphi, u^{\dagger} \right\rangle_{L^2} = -\int_a^b (f^{\dagger})''(x) \mathrm{d}x.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Statistical properties of hypothesis tests

- Hypothesis test Ψ(Y) takes only values 0 (accepts) and 1 (rejects).
- Probability that test correctly rejects hypothesis H₀ should be large, i.e.,

 $\mathbb{P}_{u^{\dagger}}\left[\Psi(Y)=1\right]$

for $u^{\dagger} \in \mathcal{X}$ that satisfies H_1 (power of test).

Control probability that test falsely rejects hypothesis via

$$\sup\left\{\mathbb{P}_{u^{\dagger}}\left[\Psi(Y)=1
ight]:u^{\dagger}\in\mathcal{X} ext{ satisfies }H_{0}
ight\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

(level of significance of test).

Unregularized hypothesis testing¹

▶ Assume that $\varphi \in \operatorname{ran} T^*$ and choose $\Phi_0 \in \mathcal{Y}$ such that

 $T^*\Phi_0=\varphi.$

• Then $\langle Y, \Phi_0 \rangle$ is **natural estimator** for desired quantity

$$\langle \varphi, u^{\dagger} \rangle_{\mathcal{X}} = \langle T^* \Phi_0, u^{\dagger} \rangle_{\mathcal{X}} = \langle \Phi_0, T u^{\dagger} \rangle_{\mathcal{Y}}.$$

Define test

$$\Psi_0(Y) := \mathbf{1}_{\langle Y, \Phi_0 \rangle > c}$$

• Test Ψ_0 has level $\alpha \in (0,1)$ and power

$$\mathbb{P}_{u^{\dagger}}\left[\Psi_{0}(Y) = 1
ight] = Q\left(Q^{-1}(lpha) + rac{\langle arphi, u^{\dagger}
angle}{\sigma \left\| \Phi_{0}
ight\|}
ight),$$

for choice $c := \sigma \|\Phi_0\| Q^{-1}(1-\alpha)$, where Q is cdf of $\mathcal{N}(0,1)$.

¹K. Proksch, F. Werner, A. Munk (2018). *Multiscale scanning in inverse problems*. Ann. Statist., 46(6B).

For certain features, **unregularized testing** is unfeasable.

- 1. If $\varphi \notin \operatorname{ran} T^*$, approach **not** applicable.
- 2. Probe element Φ_0 is solution to **ill-posed equation** $T^*\Phi_0 = \varphi$. For certain features, norm of Φ_0 is huge, and **power** of unregularized test Ψ_0 is **arbitrarily close to level**.

Solutions

Both of these limitations can be overcome by regularized hypothesis tests

$$\Psi_{\Phi,c}(Y) := \mathbf{1}_{\langle Y, \Phi \rangle > c}, \quad \Phi \in \mathcal{Y}, c \in \mathbb{R}.$$

- 1. Maximize (empirical) power among class of regularized level α tests².
- Define tests using Bayesian approach: Reject based upon posterior probabilities.
- 3. Choose probe element Φ as **Tikhonov regularized solution** to equation $T^*\Phi_0 = \varphi$.

²R. Kretschmann, D. Wachsmuth, F. Werner (2022). *Optimal regularized* hypothesis testing in statistical inverse problems. Preprint, arXiv: 2212.12897 - oge

Structure

Introduction

Maximum a posteriori testing

Definition and evaluation Interpretation as regularized test Optimality

Performance under spectral source condition

A priori and a posteriori choice of prior covariance Numerical results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Bayesian set-up

Consider problem from Bayesian perspective,

 $Y = TU + \sigma Z.$

Assign Gaussian prior distribution Π = N(m₀, C₀) to U,
 C₀ symmetric, positive definite, trace class,
 U and Z independent.

Conditional distribution of U, given Y = y, almost surely Gaussian $\mathcal{N}(m, C)$ with

$$C = \sigma^2 C_0^{\frac{1}{2}} \left(C_0^{\frac{1}{2}} T^* T C_0^{\frac{1}{2}} + \sigma^2 \mathrm{Id} \right)^{-1} C_0^{\frac{1}{2}},$$

$$m = m_0 + C_0^{\frac{1}{2}} \left(C_0^{\frac{1}{2}} T^* T C_0^{\frac{1}{2}} + \sigma^2 \mathrm{Id} \right)^{-1} C_0^{\frac{1}{2}} T^* (y - T m_0).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Maximum a posteriori testing

For $\varphi \in \mathcal{X}$, define maximum a posteriori (MAP) test Ψ_{MAP} by $\Psi_{MAP}(y) := \begin{cases} 1 & \text{if } \mathbb{P}[\langle \varphi, U \rangle > 0 | Y = y] > \mathbb{P}[\langle \varphi, U \rangle \le 0 | Y = y], \\ 0 & \text{otherwise,} \end{cases}$ $= \begin{cases} 1 & \text{if } \mathbb{P}[\langle \varphi, U \rangle > 0 | Y = y] > \frac{1}{2}, \\ 0 & \text{otherwise.} \end{cases}$

Hypothesis H₀ needs to have positive prior probability.

▶ Conditional distribution of $\langle \varphi, U \rangle_{\mathcal{X}}$, given Y = y, is

 $\mathcal{N}(\langle \varphi, m \rangle_{\mathcal{X}}, \langle \varphi, C \varphi \rangle_{\mathcal{X}}).$

Evaluating MAP test

• Cdf
$$F_{\varphi}$$
 of $\langle \varphi, U \rangle_{\mathcal{X}}$, given $Y = y$, is

$$F_{arphi}(t) = \mathbb{P}\left[\langle arphi, U
angle \leq t | Y = y
ight] = Q\left(rac{t - \langle arphi, m
angle}{\langle arphi, C arphi
angle^{1/2}}
ight),$$

where Q is cdf of $\mathcal{N}(0, 1)$.

Hence

$$egin{aligned} \Psi_{\mathsf{MAP}}(y) &= 1 & \Leftrightarrow & \mathbb{P}\left[\langle arphi, U
angle_{\mathcal{X}} > 0 | Y = y
ight] > rac{1}{2} \ & \Leftrightarrow & F_{arphi}(0) < rac{1}{2} & \Leftrightarrow & \langle arphi, m
angle_{\mathcal{X}} > 0. \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Connection with Tikhonov regularization

We have

$$\langle \varphi, m \rangle_{\mathcal{X}} = \langle y, \Phi_{\mathsf{MAP}} \rangle - \langle m_0, T^* \Phi_{\mathsf{MAP}} - \varphi \rangle_{\mathcal{X}},$$

where

$$\Phi_{\mathsf{MAP}} := TC_0^{\frac{1}{2}} \left(C_0^{\frac{1}{2}} T^* TC_0^{\frac{1}{2}} + \sigma^2 \mathsf{Id} \right)^{-1} C_0^{\frac{1}{2}} \varphi.$$

► If T is compact and C_0 commutes with T^*T , then Φ_{MAP} is **minimizer** of

$$\Phi \mapsto \left\| T^* \Phi - \varphi \right\|_{\mathcal{X}}^2 + \sigma^2 \left\| C_0^{-\frac{1}{2}} V^* \Phi \right\|_{\mathcal{X}}^2,$$

where V is a unitary operator such that T = V |T|.

Interpretation as regularized test

Theorem [Kretschmann, Wachsmuth, Werner 2022]

Under a priori assumptions on u^{\dagger} , for every $\varphi \in \overline{\operatorname{ran} T^*}$, $\Phi \in \mathcal{Y}$, and $\alpha \in (0, 1)$, rejection threshold $c = c(\varphi, \Phi, \alpha)$ can be chosen such that regularized test

$$\Psi_{\Phi,c}(Y) = \mathbf{1}_{\langle Y,\Phi\rangle > c}$$

has **level** α for testing H_0 against H_1 .

MAP test Ψ_{MAP} corresponds to regularized test $\Psi_{\Phi_{MAP},c_{MAP}}$ with $c_{MAP} := \langle m_0, T^* \Phi_{MAP} - \varphi \rangle_{\mathcal{X}}$ and has level α if prior mean m_0 is chosen according to

$$\langle m_0, T^* \Phi_{\mathsf{MAP}} - \varphi \rangle_{\mathcal{X}} = c(\varphi, \Phi_{\mathsf{MAP}}, \alpha).$$

Optimality

Theorem [Kretschmann, Wachsmuth, Werner 2022]

For $\varphi \in \overline{\operatorname{ran} T^*}$ and under a priori assumptions on u^{\dagger} , there exists **optimal probe element** $\Phi^{\dagger} \in \mathcal{Y}$ that **maximizes power** among all regularized level α tests.

Theorem

If T is compact with singular system $(\tau_k, e_k, f_k)_{k \in \mathbb{N}}$ and if

$$\langle arphi, e_k
angle_{\mathcal{X}} = 0 \quad ext{for all } k \in \mathbb{N} ext{ with } \langle T^* \Phi^\dagger, e_k
angle_{\mathcal{X}} = 0,$$

then prior covariance C_0 can be chosen such that power of Ψ_{MAP} is arbitrarily close to power of optimal regularized test $\Psi_{\Phi^{\dagger},c(\varphi,\Phi^{\dagger},\alpha)}$.

Structure

Introduction

Maximum a posteriori testing

Definition and evaluation Interpretation as regularized test Optimality

Performance under spectral source condition

A priori and a posteriori choice of prior covariance Numerical results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A priori assumptions on u^{\dagger}

Assumptions

- 1. Forward operator T is Hilbert–Schmidt and injective.
- 2. Spectral source condition

$$u^{\dagger} = (T^*T)^{\frac{\nu}{2}}w, \quad \|w\|_{\mathcal{X}} \leq \rho$$

for some $w \in \mathcal{X}$ and $\nu, \rho > 0$.

3. Prior covariance operator

$$C_0 = \gamma^2 (T^*T)^{\mu}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

for some $\gamma > 0$ and $\mu \ge 1$.

A priori choice of prior covariance

Theorem

If prior covariance is chosen as $C_0 = \gamma_0^2 \sigma^2 (T^*T)^{\mu}$ with $\gamma_0 > 0$ and if $\mu > \frac{\nu}{2} - 1$, then **power** of Ψ_{MAP} is at least

$$\mathbb{P}_{u^{\dagger}}\left[\Psi_{\mathsf{MAP}}(Y)=1\right] \geq Q\left(Q^{-1}(\alpha) + \frac{\frac{\langle \varphi, u^{\dagger} \rangle}{\|\varphi\|} - 2\rho\gamma_{0}^{-\frac{\nu}{\mu+1}}}{\sigma\gamma_{0}^{\frac{1}{\mu+1}}}\right)$$

- Nontrivial power if feature size is above threshold $2\rho\gamma_0^{-\frac{\nu}{\mu+1}}$.
- Choose γ_0 to maximize lower bound for specific feature size.

A posteriori choice of prior covariance

MAP test Ψ_{MAP} has **power**

$$\mathbb{P}_{u^{\dagger}}\left[\Psi_{\mathsf{MAP}}(Y)=1\right]=Q\left(Q^{-1}(\alpha)-\frac{J_{\mathcal{T}u^{\dagger}}(\Phi_{\mathsf{MAP}}(\mathcal{C}_{0}))}{\sigma}\right),$$

where $J_{\mathcal{T}u^{\dagger}} \colon \mathcal{Y} \to \mathbb{R}$ [Kretschmann, Wachsmuth, Werner 2022].

- Functional J_{Tu[†]} unaccessible, use empirical functional J_Y instead.
- Choose $C_0 = \gamma^2 (T^*T)^{\mu}$ and $\gamma > 0$ as **minimizer** of

$$\gamma \mapsto J_Y(\Phi_{\mathsf{MAP}}(\gamma(T^*T)^{\mu})) + \omega(\log \gamma)^2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with $\omega > 0$.

Due to dependence of Φ_{MAP} on Y via γ, it is no longer guaranteed that test has level α.

Numerical results - Deconvolution

Figure: Exact power of unregularized test (----), oracle MAP test (-----), and empirical power and level of MAP test (------) for $\nu = 1$, $\mu = 2$, $\alpha = 0.1$, $\omega = 0.003$, and M = 1000 samples.

Numerical results – Antiderivative problem

Figure: Exact power of unregularized test (----), oracle MAP test (-----), and empirical power and level of MAP test (------) for $\nu = 1$, $\mu = 2$, $\alpha = 0.1$, $\omega = 0.01$, and M = 1000 samples.

Conclusion

- MAP test based upon Gaussian prior can be evaluated via Tikhonov–Phillips regularization.
- ► MAP test is defined for any feature described by bounded linear functional φ ∈ X*.
- Regularizing effect allows feature testing in noise regimes where unregularized testing is unfeasible.

Outlook

Construct MAP tests simultaneously for family of features.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Other choices of prior distribution.

References

- K. Proksch, F. Werner, A. Munk (2018).
 Multiscale scanning in inverse problems.
 Ann. Statist., 46(6B), doi:10.1214/17-AOS1669.
- R. Kretschmann, D. Wachsmuth, F. Werner (2022).
 Optimal regularized hypothesis testing in statistical inverse problems.
 Preprint, arXiv: 2212.12897.