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Set-up

Consider statistical linear inverse problem

Y = Tu† + σZ ,

where
▶ T : X → Y bounded linear forward operator between real

separable Hilbert spaces X and Y,
▶ u† ∈ X unknown quantity of interest,
▶ σ > 0 noise level,
▶ Z white Gaussian noise process on Y.

For each g ∈ Y one has access to real-valued Gaussian random
variable

⟨Y , g⟩ =
〈
Tu†, g

〉
Y

+ σ ⟨Z , g⟩ .



Estimation and inference of features

▶ X ,Y typically function spaces such as Lp(Ω) or Hs(Ω) on some
domain Ω ⊆ Rd .

▶ Often one is not interested in whole function u† but in certain
features of it such as modes, homogeneity, monotonicity, or
support.

▶ Many features can be described by (family of) bounded linear
functionals φ ∈ X ∗.

▶ We perform inference for such features by means of statistical
hypothesis testing. Specifically, we test

H0 :
〈
φ, u†

〉
X ∗×X

≤ 0 against H1 :
〈
φ, u†

〉
X ∗×X

> 0.



Example 1: Support inference in deconvolution

▶ T convolution operator

Tu = h ∗ u

on L2(R) with kernel h.
▶ Question: Is supp u† ∩ (a, b) = ∅?
▶ Under assumption that u† is nonnegative, φ := 1[a,b]

describes feature of interest〈
φ, u†

〉
L2

=
∫ b

a
u†(x)dx .



Example 2: Linearity inference

▶ Direct noisy measurement

Y = f † + σZ

of function f † ∈ H1
0 (0, 1) ∩ H2(0, 1).

▶ Question: Is f † linear on (a, b) ⊆ (0, 1)?
▶ For u ∈ L2(0, 1), let Tu = f be weak solution to

−f ′′ = u on (0, 1), f (0) = f (1) = 0.

▶ Under assumption that f † is concave, φ := 1[a,b] describes
feature of interest〈

φ, u†
〉

L2
= −

∫ b

a
(f †)′′(x)dx .



Statistical properties of hypothesis tests

▶ Hypothesis test Ψ(Y ) takes only values 0 (accepts) and 1
(rejects).

▶ Probability that test correctly rejects hypothesis H0 should
be large, i.e.,

Pu† [Ψ(Y ) = 1]

for u† ∈ X that satisfies H1 (power of test).
▶ Control probability that test falsely rejects hypothesis via

sup
{
Pu† [Ψ(Y ) = 1] : u† ∈ X satisfies H0

}
(level of significance of test).



Unregularized hypothesis testing1

▶ Assume that φ ∈ ran T ∗ and choose Φ0 ∈ Y such that

T ∗Φ0 = φ.

▶ Then ⟨Y , Φ0⟩ is natural estimator for desired quantity

⟨φ, u†⟩X = ⟨T ∗Φ0, u†⟩X = ⟨Φ0, Tu†⟩Y .

▶ Define test
Ψ0(Y ) := 1⟨Y ,Φ0⟩ > c .

▶ Test Ψ0 has level α ∈ (0, 1) and power

Pu† [Ψ0(Y ) = 1] = Q
(

Q−1(α) + ⟨φ, u†⟩
σ ∥Φ0∥

)
,

for choice c := σ ∥Φ0∥ Q−1(1 − α), where Q is cdf of N (0, 1).
1K. Proksch, F. Werner, A. Munk (2018). Multiscale scanning in inverse

problems. Ann. Statist., 46(6B).



Limitations

For certain features, unregularized testing is unfeasable.
1. If φ /∈ ran T ∗, approach not applicable.
2. Probe element Φ0 is solution to ill-posed equation T ∗Φ0 = φ.

For certain features, norm of Φ0 is huge, and power of
unregularized test Ψ0 is arbitrarily close to level.



Solutions

Both of these limitations can be overcome by regularized
hypothesis tests

ΨΦ,c(Y ) := 1⟨Y ,Φ⟩ > c , Φ ∈ Y, c ∈ R.

1. Maximize (empirical) power among class of regularized level
α tests2.

2. Define tests using Bayesian approach: Reject based upon
posterior probabilities.

3. Choose probe element Φ as Tikhonov regularized solution to
equation T ∗Φ0 = φ.

2R. Kretschmann, D. Wachsmuth, F. Werner (2022). Optimal regularized
hypothesis testing in statistical inverse problems. Preprint, arXiv: 2212.12897.
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Bayesian set-up

Consider problem from Bayesian perspective,

Y = TU + σZ .

▶ Assign Gaussian prior distribution Π = N (m0, C0) to U,
▶ C0 symmetric, positive definite, trace class,
▶ U and Z independent.

Conditional distribution of U, given Y = y , almost surely Gaussian
N (m, C) with

C = σ2C
1
2

0

(
C

1
2

0 T ∗TC
1
2

0 + σ2Id
)−1

C
1
2

0 ,

m = m0 + C
1
2

0

(
C

1
2

0 T ∗TC
1
2

0 + σ2Id
)−1

C
1
2

0 T ∗(y − Tm0).



Maximum a posteriori testing

For φ ∈ X , define maximum a posteriori (MAP) test ΨMAP by

ΨMAP(y) :=
{

1 if P [⟨φ, U⟩ > 0|Y = y ] > P [⟨φ, U⟩ ≤ 0|Y = y ] ,

0 otherwise,

=
{

1 if P [⟨φ, U⟩ > 0|Y = y ] > 1
2 ,

0 otherwise.

▶ Hypothesis H0 needs to have positive prior probability.
▶ Conditional distribution of ⟨φ, U⟩X , given Y = y , is

N (⟨φ, m⟩X , ⟨φ, Cφ⟩X ) .



Evaluating MAP test

▶ Cdf Fφ of ⟨φ, U⟩X , given Y = y , is

Fφ(t) = P [⟨φ, U⟩ ≤ t|Y = y ] = Q
(

t − ⟨φ, m⟩
⟨φ, Cφ⟩1/2

)
,

where Q is cdf of N (0, 1).
▶ Hence

ΨMAP(y) = 1 ⇔ P [⟨φ, U⟩X > 0|Y = y ] >
1
2

⇔ Fφ(0) <
1
2 ⇔ ⟨φ, m⟩X > 0.



Connection with Tikhonov regularization

▶ We have

⟨φ, m⟩X = ⟨y , ΦMAP⟩ − ⟨m0, T ∗ΦMAP − φ⟩X ,

where

ΦMAP := TC
1
2

0

(
C

1
2

0 T ∗TC
1
2

0 + σ2Id
)−1

C
1
2

0 φ.

▶ If T is compact and C0 commutes with T ∗T , then ΦMAP is
minimizer of

Φ 7→ ∥T ∗Φ − φ∥2
X + σ2

∥∥∥∥C− 1
2

0 V ∗Φ
∥∥∥∥2

X
,

where V is a unitary operator such that T = V |T |.



Interpretation as regularized test

Theorem [Kretschmann, Wachsmuth, Werner 2022]
Under a priori assumptions on u†, for every φ ∈ ran T ∗, Φ ∈ Y , and
α ∈ (0, 1), rejection threshold c = c(φ, Φ, α) can be chosen such
that regularized test

ΨΦ,c(Y ) = 1⟨Y ,Φ⟩ > c

has level α for testing H0 against H1.

MAP test ΨMAP corresponds to regularized test ΨΦMAP,cMAP with
cMAP := ⟨m0, T ∗ΦMAP − φ⟩X and has level α if prior mean m0 is
chosen according to

⟨m0, T ∗ΦMAP − φ⟩X = c(φ, ΦMAP, α).



Optimality

Theorem [Kretschmann, Wachsmuth, Werner 2022]
For φ ∈ ran T ∗ and under a priori assumptions on u†, there exists
optimal probe element Φ† ∈ Y that maximizes power among all
regularized level α tests.

Theorem
If T is compact with singular system (τk , ek , fk)k∈N and if

⟨φ, ek⟩X = 0 for all k ∈ N with ⟨T ∗Φ†, ek⟩X = 0,

then prior covariance C0 can be chosen such that power of ΨMAP
is arbitrarily close to power of optimal regularized test
ΨΦ†,c(φ,Φ†,α).
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A priori assumptions on u†

Assumptions

1. Forward operator T is Hilbert–Schmidt and injective.
2. Spectral source condition

u† = (T ∗T )
ν
2 w , ∥w∥X ≤ ρ

for some w ∈ X and ν, ρ > 0.
3. Prior covariance operator

C0 = γ2(T ∗T )µ

for some γ > 0 and µ ≥ 1.



A priori choice of prior covariance

Theorem
If prior covariance is chosen as C0 = γ2

0σ2(T ∗T )µ with γ0 > 0 and
if µ > ν

2 − 1, then power of ΨMAP is at least

Pu† [ΨMAP(Y ) = 1] ≥ Q

Q−1(α) +
⟨φ,u†⟩

∥φ∥ − 2ργ
− ν

µ+1
0

σγ
1

µ+1
0

 .

▶ Nontrivial power if feature size is above threshold 2ργ
− ν

µ+1
0 .

▶ Choose γ0 to maximize lower bound for specific feature size.



A posteriori choice of prior covariance

▶ MAP test ΨMAP has power

Pu† [ΨMAP(Y ) = 1] = Q
(

Q−1(α) − JTu†(ΦMAP(C0))
σ

)
,

where JTu† : Y → R [Kretschmann, Wachsmuth, Werner 2022].
▶ Functional JTu† unaccessible, use empirical functional JY

instead.
▶ Choose C0 = γ2(T ∗T )µ and γ > 0 as minimizer of

γ 7→ JY (ΦMAP(γ(T ∗T )µ)) + ω(log γ)2

with ω > 0.
▶ Due to dependence of ΦMAP on Y via γ, it is no longer

guaranteed that test has level α.



Numerical results – Deconvolution
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Figure: Exact power of unregularized test ( ), oracle MAP test ( ),
and empirical power and level of MAP test ( , ) for ν = 1, µ = 2,
α = 0.1, ω = 0.003, and M = 1000 samples.



Numerical results – Antiderivative problem
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Figure: Exact power of unregularized test ( ), oracle MAP test ( ),
and empirical power and level of MAP test ( , ) for ν = 1, µ = 2,
α = 0.1, ω = 0.01, and M = 1000 samples.



Conclusion

▶ MAP test based upon Gaussian prior can be evaluated via
Tikhonov–Phillips regularization.

▶ MAP test is defined for any feature described by bounded
linear functional φ ∈ X ∗.

▶ Regularizing effect allows feature testing in noise regimes
where unregularized testing is unfeasible.

Outlook
▶ Construct MAP tests simultaneously for family of features.
▶ Other choices of prior distribution.
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