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Set-up

Consider statistical linear inverse problem
Y=Tu +02Z,

where

» T: X — )Y bounded linear forward operator between real
separable Hilbert spaces X and Y,

» uf € X unknown quantity of interest,
» o > 0 noise level,
» Z white Gaussian noise process on ).

For each g € )V one has access to real-valued Gaussian random
variable

(Y,g) = <TuT,g>y—|-U<Z,g>.



Estimation and inference of features

> X,) typically function spaces such as LP(2) or H*(2) on some
domain Q C RY,

» Often one is not interested in whole function u! but in certain
features of it such as modes, homogeneity, monotonicity, or
support.

» Many features can be described by (family of) bounded linear
functionals ¢ € X*.

» We perform inference for such features by means of statistical
hypothesis testing. Specifically, we test

Ho : <<p, uT>X*XX <0 against Hi: <g0, UT>X*><X > 0.



Example 1: Support inference in deconvolution

» T convolution operator

Tu=hx*u
on L2(R) with kernel h.
» Question: Is supp uf N (a, b) = 07

» Under assumption that uf is nonnegative, ¢ := 1,5
describes feature of interest

<g0, uT>L2 = /ab uf(x)dx.



Example 2: Linearity inference

P Direct noisy measurement
Y=Ff 40z

of function fT € H3(0,1) N H?(0,1).
» Question: Is T linear on (a, b) C (0,1)?
» For u € L?(0,1), let Tu = f be weak solution to

—f"=u on (0,1), f(0) = f(1) = 0.

» Under assumption that T is concave, ¢ = 1(, ) describes
feature of interest

(o) =~ [ (Y



Statistical properties of hypothesis tests

» Hypothesis test V(Y') takes only values 0 (accepts) and 1
(rejects).
» Probability that test correctly rejects hypothesis Hy should

be large, i.e.,
Py [W(Y) = 1]

for ut € X that satisfies H; (power of test).
» Control probability that test falsely rejects hypothesis via

sup {PUT [W(Y)=1]: u' € X satisfies Ho}

(level of significance of test).



Unregularized hypothesis testing?
» Assume that ¢ € ran T* and choose ®¢ € Y such that
T ®g = .
» Then (Y, ®g) is natural estimator for desired quantity
(o, u) = (T* g, ul) = (Do, Tul),,.

» Define test
Vo(Y) =Ly 00 >c-
» Test Wy has level « € (0,1) and power

Py [Wo(Y)=1]=Q (Q_l(a) + 2 UT>> ,
7 o]

for choice ¢ := o ||®g| Q1(1 — ), where Q is cdf of N/(0,1).

K. Proksch, F. Werner, A. Munk (2018). Multiscale scanning in inverse
problems. Ann. Statist., 46(6B).




Limitations

For certain features, unregularized testing is unfeasable.
1. If ¢ ¢ ran T*, approach not applicable.

2. Probe element ®g is solution to ill-posed equation T*®g = .
For certain features, norm of ®q is huge, and power of
unregularized test Wy is arbitrarily close to level.



Solutions

Both of these limitations can be overcome by regularized
hypothesis tests

Voo(Y) =Lyoyse, ®€V,ceR

1. Maximize (empirical) power among class of regularized level
o tests?.

2. Define tests using Bayesian approach: Reject based upon
posterior probabilities.

3. Choose probe element ® as Tikhonov regularized solution to
equation T*®g = .

2R. Kretschmann, D. Wachsmuth, F. Werner (2022). Optimal regularized
hypothesis testing in statistical inverse problems. Preprint, arXiv: 2212.12897.
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Bayesian set-up

Consider problem from Bayesian perspective,
Y=TU+oZ.

» Assign Gaussian prior distribution M = N(mg, G) to U,
» (p symmetric, positive definite, trace class,
» U and Z independent.

Conditional distribution of U, given Y =y, almost surely Gaussian
N (m, C) with
1 1 1 -1
C=0%C (coz T*TC; + a2ld> cg,

1

1/ 1 1 -1 1
m=my+ C§ <C02 T"TC; + 02|d> Ci T*(y — Tmg).



Maximum a posteriori testing

For ¢ € X, define maximum a posteriori (MAP) test W\ ap by

Wap(y) = {1 if P[(p, U) > 0]Y = y] > P[{p, U) < O]Y = y],

0 otherwise,

1 ifP[{p, Uy > 0]Y =y] > 3,
~ 10 otherwise.

» Hypothesis Hy needs to have positive prior probability.
» Conditional distribution of (¢, U) ,, given Y =y, is

N ((p:m)x s (@, Co) ) -



Evaluating MAP test

» Cdf F, of (¢, U)y, given Y =y, is

t_<S07m>
Fo(t)=P[lp, U) <tlY =y] = Q| — 2T )
A0 =Flie ) <ty =)= @ (=121
where @ is cdf of A/(0,1).
> Hence

1
Umap(y) =1 & Plp,U)y >0V =y]> 5

1
& F¢(0)<§ & (p,m), >0.



Connection with Tikhonov regularization

» We have

(0, m)x = (y, Pmapr) — (mo, T"®Pmap — ¢) y
where
1/ 1 1 -1 1
dyap == TCE (cg T*TC; +02Id> G-
> If T is compact and Cp commutes with T*T, then Opap is

minimizer of

2

_1
O | T — |5 +0% |G 2 Vo

9

X

where V is a unitary operator such that T = V| T].



Interpretation as regularized test

Theorem [Kretschmann, Wachsmuth, Werner 2022]

Under a priori assumptions on uf, for every ¢ € ran T*, ® € ), and
a € (0,1), rejection threshold ¢ = c(¢, P, @) can be chosen such
that regularized test

Vo o(Y)=1iyvo)>c
has level « for testing Hp against Hj.

MAP test Wyap corresponds to regularized test Vo, cap With
amap = (mo, T*®ymap — @) and has level « if prior mean mq is
chosen according to

(mo, T*®map — ¢) v = c(@, Pmap, @).



Optimality

Theorem [Kretschmann, Wachsmuth, Werner 2022]

For ¢ € ran T* and under a priori assumptions on uf, there exists
optimal probe element ®f € ) that maximizes power among all
regularized level « tests.

Theorem

If T is compact with singular system (7x, e, fx)ken and if
(0, ex)y =0 forall k € N with (T*®T e), =0,

then prior covariance Cy can be chosen such that power of Wy ap
is arbitrarily close to power of optimal regularized test

Vot c(p0fa)
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A priori assumptions on u'

Assumptions

1. Forward operator T is Hilbert—Schmidt and injective.

2. Spectral source condition
ot =(T*T)ow, |wly<p

for some w € X and v, p > 0.

3. Prior covariance operator
Go=~A(T*T)

for some v > 0 and p > 1.



A priori choice of prior covariance

Theorem

If prior covariance is chosen as Cyp = Y30 2(T*T)* with 79 > 0 and
if u > 2 —1, then power of Wap is at least

v

(cp,uT) _ 2/)70_ utl
P [Wmar(Y) =1 > Q| @ () + & —
1
201

» Nontrivial power if feature size is above threshold 2pv, ***.

» Choose 7y to maximize lower bound for specific feature size.



A posteriori choice of prior covariance

» MAP test Wpap has power

P, [Wmar(Y) =1 =Q (Ql(a) _ JTu*(q’MAP(Co))) 7

(2

where J1,+: Y — R [Kretschmann, Wachsmuth, Werner 2022].

» Functional J,+ unaccessible, use empirical functional Jy
instead.

» Choose Co = v2(T*T)* and v > 0 as minimizer of

v = Iy (Pmap(V(T*T)*)) + w(logy)?
with w > 0.

» Due to dependence of ®pap on Y via 7, it is no longer
guaranteed that test has level «.



Numerical results — Deconvolution
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Figure: Exact power of unregularized test (——), oracle MAP test (),
and empirical power and level of MAP test (——,----) forv =1, u =2,
a=0.1, w=0.003, and M = 1000 samples.



Numerical results — Antiderivative problem
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Figure: Exact power of unregularized test (——), oracle MAP test (
and empirical power and level of MAP test (——,----) forv =1, u =2,

a=0.1, w=0.01, and M = 1000 samples.

).



Conclusion

» MAP test based upon Gaussian prior can be evaluated via
Tikhonov—Phillips regularization.

» MAP test is defined for any feature described by bounded
linear functional ¢ € X'*.

» Regularizing effect allows feature testing in noise regimes
where unregularized testing is unfeasible.

Outlook

» Construct MAP tests simultaneously for family of features.
» Other choices of prior distribution.
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