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Abstract

The focus of this work are Bayesian inverse problems in an infinite-dimensional setting with
Gaussian prior and data corrupted by additive Laplacian noise. In particular, the connection
between Tikhonov-Phillips regularisation with an ¢!-discrepancy term and Bayesian MAP
estimation based upon a Laplacian noise model is investigated for linear problems as well as
the consistency of MAP and CM estimator.

For Laplacian infinite product measures on a separable Hilbert space, a result similar to the
Cameron—Martin theorem for Gaussian measures is shown, stating the space of admissible
shifts and the relative density of shifted Laplacian measures.

Under certain conditions on the log-likelihood, MAP estimates in separable Hilbert spaces are
characterised as minimisers of the Onsager—-Machlup functional of the posterior distribution,
which in this case has the form of a Tikhonov-Phillips functional with a discrepancy term given
by the log-likehood and a squared norm penalty term.

The behaviour of MAP and CM estimator is studied for a severely ill-posed linear problem; a
generalised form of the inverse heat equation, under the presence of additive Laplacian noise.
The posterior distribution is derived via Bayesian inference and both MAP and CM estimator are
computed explicitly. The MAP estimator is shown to be asymptotically unbiased in a frequentist
setting. An estimate for the convergence rate of the bias is stated under an analytic source
condition. Moreover, an estimate for the convergence rate of the mean squared error of the
MAP estimator is proved under an analytic source condition and in conjunction with an a priori
parameter choice. This rate is then compared to the minimax rate in the fully Gaussian case.

The behaviour and consistency of MAP and CM estimator is studied numerically for the
classical inverse heat equation in one dimension with additive Laplacian noise. The empirical
MSE of both estimators is observed to converge to zero in the small noise limit with the estimated
rate if an analytic source condition is satisfied, whereas neither MAP nor CM estimator converge
towards the true solution in mean square if only a Sobolev-type source condition is satisfied.
Moreover, empirical confidence regions around both estimators are computed. Finally, a direct
sampler for the posterior distribution is developed and used to compute credible regions around
both estimators.
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Introduction

The objective of an inverse problem, in general, is reconstructing an unknown quantity of
interest from indirect measurements which are connected to the sought-after quantity by a
mathematical model. This might be necessary, for example, because the unknown quantity itself
cannot be measured directly. Both unknown and measured quantities are typically functions in
a certain function space and as such infinite-dimensional. The model can usually be expressed
as an operator equation

y =F(u) Q)

with a linear or nonlinear mapping F between two Banach spaces describing the relation
between the unknown quantity u and the measured quantity y. Now, predicting the measured
data y for a given value of u is called the direct problem. Contrary to this is the inverse problem,
which consists in finding the unknown u for given data y.

The term inverse problem usually refers to ill-posed inverse problems. According to Hadamard,
a problem is called well-posed if the following three conditions hold.

(H1) A solution exists.
(H2) The solution is unique.

(H3) The solution depends continuously on the data.

If, on the other hand, one of these conditions is violated, the problem is called ill-posed.

An inverse problem may be ill-posed for several reasons: The solution might not be unique
because the setup of the experiment limits the amount of information that can be obtained
about the unknown quantity. Even if a unique solution exists for attainable data y, i.e., data in
the range of the forward mapping F, there might not exist a solution for arbitrary noisy data.
Or, most importantly, the forward mapping F might not be continuously invertible. A direct
problem can be well-posed, even if the inverse problem is ill-posed. This is, for instance, the case
for operator equations involving a compact linear forward operator F with infinite-dimensional
range.

Model (1) is still highly idealised as it does not take measurement errors into account. A more
realistic model

y=F@u)+n
is obtained by incorporating additive noise n present in the measurements. Classically, the noise
is assumed to be a deterministic quantity whose norm is strictly bounded by the noise level
6> 0,ie.,
ly = F@ly = Inlly <6,

but it can also be modelled as a stochastic quantity, that is as a random variable with a known
probability distribution.
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Introduction

Often, the distribution of the noise can reasonably be assumed to be Gaussian. There are,
however, cases where it is natural to assume a non-Gaussian noise distribution, for instance,
inverse problems with impulsive noise such as salt-and-pepper noise or random valued impulsive
noise, which arise in many applications in image and signal processing, see [Bovik 2005], e.g.,
image acquisition with faulty pixels in a sensor or faulty memory locations. Such impulsive
noise functions (or vectors, respectively) take very large values on a small part of their domain,
while being small or identical to zero elsewhere.

While the assignment of the terms direct and inverse problem can be considered somewhat
arbitrary, it is the ill-posedness of a problem that makes solving it ad hoc in a stable way
impossible. This is overcome by, instead of trying to compute the true solution, computing a
regularised solution that is close to the true solution and depends continuously on the data. The
nonexistent or discontinuous inverse F~! of the forward mapping is approximated by a family
{Ry}a>0 of continuous mappings, called a regularisation, that converges pointwise towards F*.
This means that for each value of @ the regularised solution u, := R,(y) depends continuously
on the data y and for each value of the unknown u the regularised solution u, = R,(F(u)) for
noise free data converges to u as « tends to zero. One of the advantages of modelling not only
the problem but also the regularisation method on infinite-dimensional spaces is that desirable
properties such as convergence and stability can be established inpependent of the chosen
discretisation.

The choice of the regularisation parameter « plays a central role in obtaining a good recon-
struction. On the one hand, it should be chosen small enough, so that F~! is approximated
well enough. On the other hand, choosing it too small results in an increased error due to the
discontinuity of F~1. If « is chosen only depending on the noise level we speak of an a priori
parameter choice rule, whereas we speak of an a posteriori parameter choice rule if both the noise
level and the measured data is taken into account.

A widely used class of regularisation methods is variational regularisation, where the regu-
larised solution u, is given as the solution of an optimisation problem

min {®(u, y) + aR(u)}

with a discrepancy term (or data fitting term) ®(u, y) and a penalty term (or regularisation term)
aR(u). The most prominent example of such a regularisation method is Tikhonov-Phillips
regularisation, where the objective functional has the form

ur [ly = F)llf + allullf.

For inverse problems with impulsive noise, Tikhonov-Phillips regularisation with an L'-data
fitting term has been observed to provide better estimates than L2-data fitting [Kirkkinen,
Kunisch, and Majava 2005; Clason, Jin, and Kunisch 2010], due to its higher robustness towards
outliers. This remarkable difference in performance has been studied further in [Hohage and
Werner 2014; Konig, Werner, and Hohage 2016] within a deterministic framework in case of
finitely and infinitely smoothing forward operators, resulting in improved convergence rate
estimates. Here, an impulsive noise function may be arbitrarily large on a small part of its
domain, while being small in L'-norm on the rest of its domain.



The objective of statistical inference is to estimate certain quantities of interest which are
unknown or unobservable, called the parameter, given measurements of observable quantities
(the data) that are linked to the unknown quantities by a model. For any fixed value of the
parameter the data is assumed to be a random variable with a probability distribution specified
by the model. Classical statistical inference takes a frequentist point of view, insofar as the
parameter is assumed to be a deterministic quantity. If the parameter is infinite-dimensional,
the setting is commonly called nonparametric. Inverse problems with stochastic noise fall in
this framework. Here, the model is derived from the operator equation describing the relation
between unknown, noise and data and the distribution of the noise.

Consider a basic denoising problem with direct measurements y = u + 7 of an unknown
image u corrupted by noise 7. First, assume that observation and parameter are scalar, e.g., the
value of a single pixel of the image. Given multiple measurements yi, . . ., y, of the observable
quantity, an estimate # for the parameter can be defined to minimise a certain measure of scatter
for the available samples. Such estimators are called maximum likelihood estimators. Classical
choices for the objective functional are the root mean square deviation

L 1/2
sn() = (; Qi u>2)

or the mean absolute deviation

1 n
dn(w) = = > lyi —ul.
i=1

For the former choice, # is the mean of the samples, for the latter one, # is their median. If
the errors present in the observations are identically distributed and Gaussian, an estimate
minimising s, has a higher asymptotic efficiency as the number of samples n tends to infinity,
whereas one minimising d,, is asymptotically more efficient if even a small percentage of the
samples is known to be outliers that have, e.g., a higher variance, see Example 1.1 in [Huber
2009].

The whole original image u can be modelled as a function on a bounded set D ¢ R?, inde-
pendent of the resolution or the layout of a specific sensor. Assume that a single measurement
is taken (i.e., the sample size n is equal to 1) and that the value measured in every point x € D is
independently afflicted by impulsive noise. The previous considerations suggest estimating the
original image u by minimising

ly - ullys = /D 1y() — u(x)ldx.

The approach of regression analysis is to do this under the assumption that u lies in a certain
set of functions. A specific sensor can be modelled by assuming that the image is observed in
m points x, .. ., X, € D. In this case, estimating the original image u by minimising the mean
absolute deviation

3 () - utx)|
m k=1
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Introduction

can be motivated in the same way. This approach is called method of least absolute deviations.
In order to obtain reasonable estimates, the function u is typically assumed to be of a particular
form and determined by a small number of parameters. Introducing positive weights wy and
minimising

o0

wily(xe) — ()|

k=1
can now be considered as the limit case, in which the number of points m tends to infinity.

In the context of statistical inference, the regularised solution can also be considered as an
estimator for the sought-after quantity and its statistical properties can be studied, e.g., if it
converges towards the true parameter in probability (consistency) and at which rate.

In the Bayesian approach to statistical inference, in contrast, the parameters are also treated
as random variables. A probability distribution, called the prior distribution, is assigned to all
relevant unknown quantities, formalising any assumptions about their distribution without (or
before) taking the data into account. Here, the model links parameters and data by specifying
the conditional distribution of the observed, given the unknown quantities. In our context,
the density of the conditional distribution of the data, given the parameter, with respect to
a reference measure is called likelihood. The objective of Bayesian inference is to then find
the posterior distribution: the conditional distribution of the parameter given the data. Infering
the posterior distribution from model and prior distribution involves changing the order of
conditioning, which is achieved by some form of Bayes’ formula.

For linear inverse problems with a Gaussian prior distribution and additive Gaussian noise
the posterior distribution is again a Gaussian measure. The posterior contraction rate, which
describes the concentration rate of the posterior distribution around a point in the small
noise limit, has been studied in this setting under the frequentist assumption that a fixed
data-generating value of the unknown exists [Agapiou and Mathé 2018].

On finite-dimensional spaces, maximum a posteriori (MAP) estimates are defined as modes
of the posterior distribution. If a probability measure has a continuous density with respect
to the Lebesgue measure, then its modes are defined as maximisers of this density. This way,
variational regularisation with a continuous objective functional can be interpreted as maximum
a posteriori estimation, where the spread of the prior plays the role of the regularisation
parameter. This yields an analytic justification for the choice of the objective functional by
Bayesian modelling and statistical inference based upon few and explicit assumptions about
prior and noise distribution. The above definition of modes is, however, limited to measures
on finite-dimensional spaces, since there exists no Lebesgue measure on infinite-dimensional
spaces.

Another frequently used Bayesian estimator is the conditional mean (CM) estimator; it is
defined as the mean of the posterior distribution. For linear inverse problems with a Gaussian
prior distribution and additive Gaussian noise the posterior distribution is again a Gaussian
measure, so that its mode and its mean, and hence also MAP and CM estimator, coincide and can
be stated explicitly. In contrast, MAP and CM estimator can be distinct in case of non-Gaussian
noise.

The consistency and convergence rate of the MAP estimator based upon a Gaussian prior has
been investigated both in a Bayesian and in a frequentist framework for linear inverse problems

xii



with additive white Gaussian noise [Kekkonen, Lassas, and Siltanen 2016; Burger, Helin, and
Kekkonen 2018].

On infinite-dimensional spaces, the posterior distribution does not have a canonical density
due to the lack of a Lebesgue measure. Here, both maximum a posteriori estimates and modes
are commonly defined via the limit of small ball probabilities, see [Dashti, Law, et al. 2013].
This approach can be generalised using bounded, convex, and open sets instead of balls, see
[Lie and Sullivan 2018]. It is, in general, an open question if nonparametric MAP estimates are
given as solutions of a canonical optimisation problem. The Onsager—Machlup functional of
the posterior distribution, which is also defined via the limit of small ball probabilites, can be
considered as its generalised negative logarithmic density. As such, it is a natural candidate for
use as an objective functional. Under certain conditions on the likelihood, MAP estimates for
nonlinear inverse problems with a Gaussian prior have been shown to coincide with minimisers
of the Onsager—Machlup functional of the posterior distribution [Dashti, Law, et al. 2013], which
in this case has the form of a Tikhonov—-Phillips functional with a discrepancy term given by
the negative log-likelihood and a squared norm penalty term. These conditions are, for example,
satisfied for linear problems with additive Gaussian noise and finite-dimensional data. A similar
variational characterisation of MAP estimates has been shown to hold true for nonlinear inverse
problems with a B;-Besov prior [Agapiou, Burger, et al. 2018], involving a Besov norm penalty
term. This is of particular interest, because the Bf-Besov norm can be considered as a weighted
£'-norm. If, on the other hand, the posterior distribution is discontinuous in a certain sense, e.g.,
if it is not quasi-invariant along any direction, the Onsager—Machlup functional is not defined
and minimisers of a canonical Tikhonov-Phillips functional are, in general, no MAP estimates
but only generalised MAP estimates [Clason, Helin, et al. 2019].

In the context of these results, the question arises if a similar variational characterisaton
of nonparametric MAP estimates is possible in case of non-Gaussian noise. In particular, we
are interested in the question if a statistical interpretation of Tikhonov—-Phillips regularisation
with an ¢!-discrepancy term as a Bayesian MAP estimator is possible and on which exact noise
model it is based. A promising candidate for a noise model that might lead to such an estimator
is Laplacian infinite product noise. In order to connect its MAP estimates to an optimisation
problem we show that a variational characterisation of MAP estimates based upon a Gaussian
prior is possible for a general class of models. Moreover, we investigate the behaviour and
statistical properties of such a MAP estimator for a specific problem both analytically and
numerically, and examine if the CM estimator behaves fundamentally different. To this end,
we consider a severly ill-posed linear inverse problem with additive Laplacian noise. Here, we
obtain an objective functional with a discrepancy term that coincides with the weighted !-norm
up to a constant on finite-dimensional subspaces.

This thesis is structured as follows: In Chapter 1, we discuss fundamental notions necessary to
conduct nonparametric Bayesian inference, such as conditional probabilities and regular condi-
tional distributions, introduce Bayes’ formula and portray how inverse problems with stochastic
noise fit into this framework. In Chapter 2, we review the definition of Gaussian measures on
separable Hilbert spaces and their representation as an infinite product measure. Furthermore,
we present the Cameron—-Martin theorem, which gives a criterion for the equivalence of shifted
Gaussian measures and states their relative density.
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Introduction

In Chapter 3, we construct Laplacian infinite product measures on separable Hilbert spaces
based upon the Laplace distribution on R. We then determine the directions in which translations
of a Laplacian measure lead to an equivalent measure and state the density of shifted Laplacian
measures with respect to centred ones.

In Chapter 4, we characterise MAP estimates for nonlinear Bayesian inverse problems with
Gaussian prior distribution under certain assumptions on the log-likelihood as minimisers of
the Onsager—-Machlup functional of the posterior distribution, which in this case has the form
of a Tikhonov—-Phillips functional with a squared norm penalty term and a discrepancy term
given by the negative log-likelihood.

In Chapter 5, we consider a severely ill-posed linear problem and explain how it can be
understood as a generalisation of the inverse heat equation. We infer the posterior distribution
in case of a Gaussian prior and additive Laplacian noise. Then, we express the MAP estimator
in analytic form using its variational characterisation and study its behaviour in a frequentist
setting: We show that it is asymptotically unbiased in conjunction with an a priori parameter
choice rule and estimate the convergence rate of the bias under a source condition. Moreover,
we estimate the convergence rate of its mean squared error under a source condition using an a
priori parameter choice, and compare this rate with the minimax rate for Gaussian noise. Here,
we also express the CM estimator in analytic form.

In Chapter 6, we study the behaviour of MAP and CM estimator numerically for the inverse
heat equation in one dimension under the presence of Laplacian measurement noise. We assess
the spread of Laplacian noise depending on its smoothness by considering empirical credible
regions. We examine how the degree of smoothness of the noise and the prior affects the ability
of both estimators to reconstruct the unknown. In a frequentist setting, we study the effect of
the regularisation parameter on the mean squared error of MAP and CM estimator as well as
the consistency and convergence rate of both estimators in terms of the mean squared error.
Moreover, we consider empirical confidence regions for the true solution around both estimators
for different values of the regularisation parameter. Eventually, we evaluate the spread of the
posterior distribution depending on the prior variance in a Bayesian setting by computing
empirical credible regions using a direct posterior sampler.

Xiv



1 Nonparametric Bayesian Inference

In this chapter we review the definition of conditional probabilities and provide a proof of Bayes’
formula in the required generality. For a broader introduction into nonparametric Bayesian
inference we refer, e.g., to [Ghosal and van der Vaart 2017, Chapter 1].

1.1 Fundamental Notions

First we recapitulate some basic definitions. Let X be a set and let $(X) denote its power set. A

set X C P(X) is called o-algebra (or o-field) if
(i) 2 € X,
(i) X \ A e X forevery A € X, and
(iii) U,enAn € X for every countable subset {A,},en C X.

Let & € P(X). Then the smallest o-algebra o(E) with & C (&) is called the o-algebra generated
by E.If X is a topological space, then the o-algebra B(X) generated by the open sets in X is
called Borel o-algebra on X. A pair (X, X) of a set X and a og-algebra X is called measureable
space. A function p: X — [0, o0] is called measure on (X, X) if

(i) p(@)=0,and
(ii) for every countable subset {A,},en C X of pairwise disjoint sets,

u( UAn) - Zu(An).

neN

A measure p on (X, X) that satisfies u(X) = 11is called probability measure and the triple (X, X, u)
probability space.

Let X be a o-algebra on a set X and let y and v be two measures on (X, X). Then p is called
absolutely continuous with respect to v (1 < v) if for every A € X, v(A) = 0 implies u(A) = 0. If
u < v then by the Radon—Nikodym theorem there exists p € L'(X, X, v), called density of p
with respect to v, such that

,u(A)=/pdv forall A e X.
A

If y < vand v < u then we say that y and v are equivalent. If, on the other hand, there is an
A € X such that p(A) = 0 and v(X \ A) = 0, then y and v are called singular.



1 Nonparametric Bayesian Inference

A function f: X — Y between two measurable spaces (X, X) and (Y, V) is called measurable
if f71(A) € X for every A € Y. A measureable function u: X — Y between a probability space
(X, X, y) and a measurable space (Y, Y), in turn, is called random variable with values in Y. In
this case, the probability measure p o u™" is called distribution of u. For A € Y, we denote the
probability of {u € A} := u"}(A) by

Plu € A] := p(u'(A)).

If a random variable u is Bochner integrable (with respect to y), then

E [u] :=/Xu(x),u(dx)

is called mean, expected value or expectation of u.

1.2 Regular Conditional Distributions

Consider a pair of random variables (u, y) with values in the measurable space (X X Y, X X V).
In the context of Bayesian inference, we will denote the parameter by u and the data by y. For
events A € Y and B € X with P[y € A] > 0 the conditional probability is defined as

PlueB,yeA]

PlueBlyeA]l= Py < A]

However, we want to define conditional probabilities of the form P [u € B|y = y,p] forall y, € Y,
that is to say we want to be able to condition on events with probability zero. We will do so in a
consistent way by means of regular conditional distributions.

For a fixed B € X the conditional probability of {u € B} given y is defined as the random
variable g(y) and denoted by P [u € B|y], where g: Y — R is a measurable function such that

E[g(y)1a(y)] = E[15(w)1a(y)] foreveryAe Y. (1)

The existence of such a function can be shown using the Radon-Nikodym theorem as follows.
First note that A — E [15(u)14(y)] = P [u € B,y € A] defines a finite measure on (Y, Y). This
measure is absolutely continuous with respect to the marginal distribution of y,as P [y € A] =0
implies P [u € B,y € A] = 0. Thus it has a density g with respect to the marginal distribution of
y by the Radon-Nikodym theorem [Klenke 2014, Cor. 7.34], which means that (1.1) is satisfied.
The function g is unique up to changes on a null set under the marginal distribution of y, as
g(y) = g(v) almost surely whenever E [g(y)1a(y)] = E [§(y)1a(y)] for all A € Y. This null set
does, however, depend on B.

In order to define a conditional distribution from these conditional probabilities in a consistent
way we need additional requirements. A map G: Y X X — [0, o) is called Markov kernel (or
stochastic kernel) from (Y, Y) to (X, X) if

(i) for any B € X the map yy — G(yy, B) is Y -measurable, and

(ii) for any y, € Y the map B — G(yy, B) is a probability measure on (X, X).



1.3 Bayes’ Formula

Now, G: Y X X — [0, o) is called regular conditional distribution of u given y, if it is a Markov
kernel from (Y, Y) to (X, X) and for every B € X we have

G(y,B) =P [u € Bly] almost surely,

ie., if

E [G(y, B)1a(y)] = E [1g(u)1a(y)] forallBe X andall A€ V.
In this case we define the conditional probability of {u € B} giveny = yy as P [u € Bly = yo] :=
G(y0, B).

A sufficient condition for the existence of a regular conditional distribution is that X is a
Polish space and X its Borel-c-algebra, see [Klenke 2014, Thm. 8.37]. It is in particular satisfied
if X is a separable Banach space equipped with its Borel-o-algebra. Note that in spite of its
name the regular conditional distribution is not actually a probability distribution, but a family
{G(y0, *)}y, ey of probability distributions.

Conditional probabilites can be defined in more generality, conditioning on an arbitrary
o-algebra instead of a random variable, see [Klenke 2014, Sections 8.2 and 8.3]. This is, however,
not necessary for our purposes.

1.3 Bayes’ Formula

Since there exists no Lebesgue-measure on infinite-dimensional separable Banach spaces, we
will state the density of the posterior distribution with respect to the prior distribution.

Proposition 1.1. On an infinite-dimensional, separable Banach space there exists no locally finite,
translation-invariant Borel measure, except for the trivial measure.

Proof. Let p be a locally finite, translation-invariant measure on an infinite-dimensional, sepa-
rable Banach space (X, B(X)). Local finiteness assures that for some § > 0 the open ball Bs(0)
has finite g-measure. Since X is infinite-dimensional, we can, using Riesz’s lemma, construct a
sequence {x, },en of points in X such that ||x,|| = 1for all n € N and

2
|, — x| > 3 for all x € span{xy,...,xp—1}.

Consequently, the balls {Bs /4(%xn)}n€N are all contained in Bs(0) and pairwise disjoint. By
translation-invariance, all these balls have the same measure, and since

(o)

W (Bf (Zx)) < u(B5(0)) < o,

n=1
the p-measure of each ball Bs /4(;31xn) must be zero. However, as X is separable, it can be covered
by a countable collection of balls of radius §/4, which is why p(X) = 0 as well. O

Let y9 denote the prior distribution on (X, X). If we assume that a regular conditional dis-
tribution (ug, A) — P, (A) of y given u exists, then the joint distribution of (u,y) is given
by

Ply € A u e Bl = E[1a(n)1p(w)] = E [P, (A)1p(w)] = /B Py (A)do(u) (1.2)
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for all A € M and B € X. This allows us to express the marginal distribution of y as
PlyeA]l= / P, (A)duo(u) forallAe Y. (1.3)
X

We derive Bayes’ formula under the assumption that there is a probability measure v on
(Y, Y) such that for every uy € X the measure P, is absolutely continuous with respect to v.
Let p,, denote the density of P,, with respect to v, i.e,

P, (A) = /Apuo (y)dv(y) forallAe Y. (1.4)

Then we can write (1.3) as

PlyeA]l= /A/Xpu(y)dyo(u)dv(y) forall A e Y (1.5)

using Fubini’s theorem. This shows that the density of the marginal distribution of y with
respect to v is given by

3o > Z(30) = /X Pu(0)dsow).

Theorem 1.2. Assume that there exists a probability measure v on (Y,Y) such that for every
ug € X the measure Py, is absolutely continuous with respect to v and let p,,, denote the respective
density. Moreover, assume that Z(y) is v-almost surely positive, where

200 = [ pun)duntu) forallyn < ¥.

If the family of posterior distributions {”°}, cy exists in the form of a regular conditional distri-
bution (yy, B) — p>°(B) of u given y, then ¥ is v-almost surely absolutely continuous with respect
to the prior distribution o and in this case the density is given by

du? = Pul)
dyto /X Pa(yo)dpo(at)

Proof. We can express (1.2) using the density p, as

Lo-almost surely. (1.6)

PlyeAueB]= ‘/A/Bpu(y)dyo(u)dv(y)

by means of Fubini’s theorem. By definition of the regular conditional distribution this proba-
bility is equal to

Ply € Aue B]=E[15Wla(y)] = E[p"(B)1a(y)] = /A 1 (B)Z(y)dv(y),

which implies that for all B € X we have

/Pu(y)d/lo(u) = uY(B)Z(y) v-almost surely.
B
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As Z(y) is v-almost surely positive we may divide by Z(y), which yields

@
¢ Lu(y)dpo(w)

In particular, p¥ is v-almost surely absolutely continuous with respect to p and in this case the
density is given by

1 (B)

v-almost surely.

Up Puo(Y) )
S Pu3)dpo(w)

In our context equation (1.6) is called Bayes’ formula. If the densities {py, },,cx are chosen
appropriately and Z(yy) is positive for all y € Y, then it holds for all y, € Y and defines a
regular conditional distribution of u given y.

Theorem 1.3. Assume that there exists a probability measure v on (Y,Y) such that for every
ug € X the measure Py, is absolutely continuous with respect to v and let p,,, denote the respective
density. If the densities {py, }u,ex can be chosen in such a way that

20 = [ puw)dp) >0 forallyy € ¥
X

and (ug, yo) = pu,(yo) is X X Y -measurable, then

fB Pu(yo)dpo(u)

/X pa(yo)dpo(it)

defines a regular conditional distribution of u given y. In particular, for every y, € Y the posterior
distribution p>° is absolutely continuous with respect to the prior distribution o and its density is
given by

(30, B) > p?*(B) :=

A o Pulw)
dpo /x Pa(yo)dpo (i)

Proof. We first show that (y,, B) — pY*(B) is a Markov kernel. On the one hand, (uy, yy) —
Pus(¥0)1B(uo) is X X Y-measurable for every B € X. Therefore,

Lo-almost surely.

Yo /B Pu(yo)dpo(u)

is Y-measurable for every B € X by Fubini’s theorem. This implies in particular the Y-
measurability of

mHﬂw=émmWM)

Consequently, y, — p?°(B) is Y -measurable as well for every B € X. On the other hand,
Uy — pu, (o) is X-measurable for every y, € Y by [Klenke 2014, Lemma 14.3] and p(X) =1,
so that 0 is a probability measure, see Remark 4.14 in [Klenke 2014]. This shows that p*°(B) is
a Markov kernel.
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Moreover, by (1.2), (1.4) and the definition of y¥(B) we have

E[15()u()] = P[y € A u € B] = /A /B P dpo(w)dv(y) = /A 1 (B)Z(y)dv(y)

for all B € X and A € Y. Since Z is the density of the marginal distribution of y with respect to
v by (1.5), this yields

E[13(w)1a(y)] = /A p¥ (B)Z(y)dv(y) = E [ (B)1a(y)] .
So (yo, B) — p?°(B) is indeed a regular conditional distribution of u given y. O

In many cases v is absolute continuous with respect to P, for every uy € X as well. Then
Pu,(y) is v-almost surely positive, so that we can express the density p,, as

Puy(y) = exp(=P(up, y)) v-almost surely,

using a measurable function ®: X X Y — R, which we call potential (or negative log-likelihood).
In this case Bayes’ formula can be written in the form

duYo —®(u,
s (u) = xXp(~2(x. y0)) Ho-almost surely.

duo - fX exp(—D(, yo))dpo (@)

1.4 Bayesian Inverse Problems

Here we briefly discuss the case when the model is defined by an operator equation with additive
noise. For more information on the Bayesian approach to inverse problems see, e.g., [Dashti and
Stuart 2017]. Let X and Y be separable Banach spaces, each equipped with its Borel o-algebra.
We assume that parameter and data follow the relation

y =F(u)+n,

where F is a (possibly nonlinear) operator from X to Y and 7 is stochastic noise, independent
of u. In this case, the model describes both the behaviour of the forward operator F and the
effect of the noise 7. The distribution v of the noise 7 on (Y, 8(Y)) plays the role of a reference
measure. For every yy € Y we define the shifted measure

Vy, := V(- = Y0).
Proposition 1.4. If vg(,) is absolutely continuous with respect to v for every uy € X, then
(UO,A) = Pu() (A) = VF(uo)(A)

is a regular conditional distribution of y given u.
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Proof. By definition, vg(,) is a probability measure for every u, € X. Let

dVF( )
puo = quO

for every uy € X denote the density of vp(,,) with respect to v. Since vg(,,) < vforallu, € X, the
family {vF(u,)}u,ex is separable with respect to the Hellinger distance by [Strasser 1985, Lemma
4.1]. Consequently, by [Strasser 1985, Lemma 4.6], the densities {py, }4,ex can be chosen such
that (ug, y0) — pu, (o) is B(X) x B(Y)-measurable. Then (ug, yo) — pu,(¥0)1a()o) is measurable
as well for any A € B(Y), which in turn implies that

ug /A Pu,(¥)dv(y) = ‘/A dVE@u)(Y) = VF(up)(A)

is measurable by Fubini’s theorem. This shows that (u, A) = VF(y,)(A) is a Markov kernel. Now
for every A € B(Y) the conditional probability of {y € A} given u is given by

Py € Alu] = vp@w)(A)  po-almost surely,

since

E [vr(A1s@)] = [ v(A~F(u))dpo(u) = /B Pln e A= Fw)]du(u)

—

Pn+F(u) € Aldpo(u) = E[1a(F(w) + m1p(u)] = E [1a(y)15(w)]

for all B € B(X). This shows that (ug, A) — Py (A) = Vp(u)(A) is a regular conditional
distribution of y given u. O

Typically, vr(,,) is not only absolutely continuous with respect to v but even equivalent for
all uy € X (see Theorems 2.4 and 3.10 below). Then the family {p,, }.,ecx of densities can be
expressed as

dvE(u,)
dv
using a measurable function ®: X X Y — R. As described in the proof of Proposition 1.4 the
densities (ug, yo) — pu, (Vo) = exp(=P(u, y)) and therefore also ® can always be chosen to be
B(X) x B(Y)-measurable.

() = puy(y) = exp(=P(up, y)) v-almost surely,






2 Gaussian Measures on Hilbert Spaces

The way we will define Laplacian measures on infinite-dimensional Hilbert spaces is strongly
influenced by the possibility of representing Gaussian measures on separable Hilbert spaces as
a product measure of Gaussian measures on the real line. For this reason we recapitulate the
definition of a Gaussian measure on a locally convex space, give a brief review of the construction
of Gaussian measures on separable Hilbert spaces as infinite-dimensional product measures and
present a result regarding the equivalence of Gaussian measures and their Radon-Nikodym
derivative with respect to each other.

2.1 Definition on Locally Convex Spaces

The definition of a Gaussian measure on a locally convex space is based upon the one of a
Gaussian measure on R. Here we follow the way they are defined in [Bogachev 1998].

Definition 2.1 ([Bogachev 1998, Def. 1.1.1]). A Borel probability measure y on R is called
Gaussian if it is either the Dirac measure §, at a point a € R or has density

1 exp (_ (t - a)z)
o\2r 202

with respect to the Lebesgue measure for some a € R and ¢ > 0. In the latter case the measure
y is called nondegenerate.

p:tH

The Dirac measure §, on (R, 8(R)) is defined by

5.(B) = 1 ifae€B,
o ifaeB.

For any Dirac measure we put o = 0. The mean and the variance of a Gaussian measure y are

given by
/ ty(dt) = aq, /(t —a)’y(dt) = o*.
R R

We will denote this measure by N, ,2. A measure with a = 0 and o = 1is called standard, a mean
zero Gaussian measure is called centred. When a = 0 we write N, instead of N, . for short.
The Fourier transform (or characteristic function) of a Gaussian measure y with parameters
(a, 0?) is given by

—~ 1
Y(y) = / exp(iyx) y(dx) = exp (iay - Eazyz) forall y € R.
R
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Now let X be a locally convex space and X* its dual space. We call a set C ¢ X cylindrical if
it has the form
C={xeX:(L(x),....ln(x) e Co}, IeX"

Denote by &(X) the o-field generated by all cylindrical subsets of X. This is the minimal o-field,
with respect to which all continuous linear functionals on X are measurable. While &(X) is
always contained in the Borel o-field 8(X), it may not coincide with it. However, for separable
Fréchet spaces, so in particular for separable Banach spaces, the equality E(X) = B(X) does
hold true, see [Bogachev 1998, Thm. A.3.7]. Gaussian measures on X are now defined via their
pushforwards under continuous linear functionals.

Definition 2.2 ([Bogachev 1998, Def. 2.2.1 (ii)]). Let X be a locally convex space. A probability
measure y defined on the o-field £(X), generated by X*, is called Gaussian if, for any f € X",
the induced measure y o f~! on R is Gaussian. The measure y is called centred if all the measures
yo f7, f € X*, are centred.

A Gaussian measure on a separable Hilbert space can be expressed in terms of its mean
and its covariance operator. Let y be a probability measure on a separable Hilbert space X. If
x — x is Bochner integrable with respect to p then p is said to have finite expectation and its
expectation, expected value or mean a € X is defined as

a::‘/xxy(dx).

If the map x — ||x||3 is Bochner integrable with respect to y then y is said to have finite variance
and the bounded linear operator Q: X — X defined by

Qh = /X(h, x —a)(x — a)u(dx)

is called its covariance operator. Furthermore, the Fourier transform (or characteristic function) ji:
X — R of u is defined by

) o= [ )
X
Theorem 2.3 ([Bogachev 1998, Thm. 2.3.1]). Let y be a Gaussian measure on a separable Hilbert
space X and let X* be identified with X by means of the Riesz representation. Then there exist a

vector a € X and a symmetric nonnegative nuclear operator K such that the Fourier transform of
the measure y equals

X > exp (i(a, x) — %(Kx, x)) . (2.1)

Conversely, for every pair (a,K) of the aforementioned type, the function (2.1) is the Fourier
transform of a Gaussian measure on the space X. In addition, a is the mean of the measure y and
K is its covariance operator.

We denote such a Gaussian measure by N, o, and by Np if a = 0.

10



2.2 Representation on Separable Hilbert Spaces

2.2 Representation on Separable Hilbert Spaces

Now we take a look at the situation in infinite-dimensional separable Hilbert spaces. The
separability permits the representation of Gaussian measures as an infinite product of Gaussian
measures on R. Here we briefly review the construction of Gaussian measures in [Da Prato
2001]. In Chapter 3, we will, however, construct Laplacian measures on separable Hilbert spaces
in the same way and portray their construction in detail.

Let H be an infinite-dimensional separable Hilbert space. A continuous linear operator Q on
H is called symmetric if

(Ox,y) = (x,Qy) forallx,y € H,

Q is called positive if
(Ox,x) >0 forallx € H,

and Q is called trace class if
TrQ:= Z(Qek, ex) < ©
k=1

for any orthonormal basis {ey }ren in H.

For any a € H and any symmetric, positive trace class operator Q € L(H) the measure N, o
can be represented as follows. Since Q is of trace class, there exists an orthonormal basis (ex)xen
in H and a sequence of nonnegative numbers (A )xen such that

Qer = Arer forall k € N.
We identify H with ¢? via the natural isomorphism y, defined by
y(x) = Zxkek for all x € £2.
k=1

Then we define the product measure

H= ® Nak,lk
k=1

on R*® := ]—[f:1 R, where a; = (a, ex) for all k € N. This measure is concentrated on £?, that
is p(£?) = 1, see [Da Prato 2001, Prop. 1.3.5]. Now the pushforward y o y ™! of the measure p
under y is a Gaussian measure on H with mean a and covariance operator Q, because its Fourier
transform is given by

(o y)(h) = el@h-2QmN  forallh e H

(see [Da Prato 2001, Prop. 1.3.7]). This results in the representation

Neo = (@ N) ot
k=1

1
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By [Da Prato 2001, Prop. 1.3.7], its mean and covariance operator satisfy
[@hNao(@)=@h. he,
H

/(x —a,h)(x —a,k) Ny o(dx) = (Qh,k), h,k € H.
H

2.3 The Cameron-Martin Theorem

Given an infinite-dimensional separable Hilbert space H and a symmetric, positive trace class
operator Q € L(H), we present a criterion for the equivalence of the centred Gaussian measure
No and the Guassian measure N, o with mean a € H.

We assume that ker(Q) = {0}. Let (ex) again denote an orthonormal basis of H, such that
Qer = Arex, k € N, where (1) are the eigenvalues of Q. We introduce the operator Q/? on H,
which is defined by

Qix = Z VAk(x, ep)eg.
=1

Its range is given by

|R“m

R(Q%)z{yeH;Z” <oo}
k=1 "k
and R(Q'?) is a dense proper subspace of H. However,

No(R(Q%)) = o,

~

see [Da Prato 2001, Prop. 1.5.2].
Theorem 2.4 (Cameron-Martin). (i) Ifa ¢ R(Q"?) then Na,o and N are singular.

(ii) Ifa € R(QY?) then Na,o and N are equivalent. Moreover, the density NN“—éQ is given by

Na,o B 1 ai Xk
= (x) = | | ok TR 2.2
NQ (x) ol P ( 2 Ak * Ak (22)

for No-almost all x € H, where ay := (a, ex) and xj := (x, ex).

A proof of Theorem 2.4 can be found in [Da Prato 2001, Thm. 2.3.1]. Equation (2.2) is called
Cameron—Martin formula and the space R(Q"/?) Cameron—Martin space of Np. The Cameron-
Martin theorem shows in particular that on an infinite-dimensional separable Hilbert space not
every translate N, o, a € H, of a centred Gaussian measure N is equivalent to Np.

The following proposition is a special case of Proposition 3 in Section 18 of [LifSic 1995].

Proposition 2.5. Let A C X be a convex, symmetric about zero, weakly bounded Borel subset of
X and h € R(Q"?). Then we have

. NQ(/’l-f-FA) B 1 1.2
i SR < exp 5l

12



2.3 The Cameron—Martin Theorem
It can be used to describe the asymptotic probability of small balls around two points. Let
B,(x) € X denote the open ball with radius r centred at x € X.

Corollary 2.6. For all hy, hy € R(QY?) we have

No(B,(h)

1, 1 2 1, _1 2
" No(Br(h) P SN0 halfy = Sl hlly | -

Proof. It follows from Proposition 2.5 that

No(Br(h1))  No(rBi(0)) . No(hy + rBy(0))
No(B,(hy)) - No(hy + rBy(0)) No(rB(0))

converges towards exp(%llQ‘éhZH; - %||Q_%h1||}2() asr — 0. ]

13






3 Laplacian Measures on Hilbert Spaces

In this section we will define Laplacian measures on an infinite-dimensional separable real
Hilbert space. First we will review the common definition of multivariate Laplace distributions
and conclude that for our purposes, they lack some desirable properties. Therefore we will not
try to generalise this definition to infinite-dimensional spaces, but instead construct a Laplacian
measure as an infinite product measure, similar to the construction of Gaussian measures in
[Da Prato 2001]. It will be based upon the Laplacian measures on R and R?, which we will
study first.

3.1 Laplacian Measures on R

First we introduce Laplacian measures on R and summarise some basic properties. For any
a € R and A > 0 we define the Laplacian measure L,  on (R, B(R)) as follows. If 1 = 0 we set

1LLO = 5a7

where §, is the Dirac measure at a. If 1 > 0 we set

1 _ V2|x-a]
L, 2(B) = —/e Vi dx VB e B(R).
T Vad s

L, ; is a probability measure, since

1

1 2
L,2(R) = —/e_\/zlx_‘”dx = —/e_|x|dx =1.
’ VoA Jr 2 Jr

If a = 0, we write £, short hand for £, ;. This measure has the following properties.

Proposition 3.1. The probability measure L, ) has mean a and variance 4, i.e.,

/ xLox(dx) = a

R

[x= P Lostan =2
R

Moreover, its characteristic function £, , is given by

] eiah
La(h :=/e’hx£ dx)= ——— VheR.
a,)L( ) R a,/l( ) 1+ %Ahz
We will call a real valued random variable Laplacian if its probability distribution is a Laplacian
measure L, 3 on R for some a € Rand 1 > 0.

15
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3.2 Elliptically Contoured Laplace Distributions on R?

Now we introduce and discuss the common definition of multivariate Laplace distributions. First
of all, multivariate Laplace distributions are defined differently by different authors — for details
we refer to the Introduction to Part II of [Kotz, Kozubowski, and Podgérski 2001]. Most often,
however, they are defined as a class of elliptically contoured distributions, which means that
their characteristic function and their density depend on its variables only through a quadratic
form.

Let O € R% be a nonnegative definite symmetric matrix. Then a d-dimensional distri-
bution is said to be multivariate symmetric Laplace with parameter Q, denoted S L 4(Q) if its
characteristic function is of the form

¥(h) for all h € RY.

T 1+ 1(Qh. )

This distribution is centred at zero and its covariance matrix is given by Q. Moreover, its density
function (for a nonsingular distribution) is given by

g(x) = (27r)_% det(Q)_% ‘/O‘X’ exp (—% - z) 27 %dz forall x € R? \ {0},

see Corollary 6.5.1 in [Kotz, Kozubowski, and Podgérski 2001]. The density can also be expressed
in terms of the modified Bessel function of the third kind K, as

g(x) = 2(27[)7% det(Q)fé ((Q_;Lx))2 K, (\/Z(Q‘lx, x)) for all x € R \ {0},

where v := (2 —d)/2, see Section 5.2.2 in [Kotz, Kozubowski, and Podgérski 2001]. Note that the
density tends to infinity as x — 0 unless d = 1.

A random variable X ~ SL;(Q) has the following representation. Let Z be a Gaussian
random variable on R? with mean zero and covariance matrix Q and let W be exponentially
distributed on R with mean 1, independent of Z. Then

x<vwz

This means that a multivariate symmetric Laplacian random variable can be thought of as a cen-
tred Gaussian random variable with stochastic variance which has an exponential distribution.

Let Z = (Zy,...,Z;) be a multivariate Gaussian random variable with mean zero and covari-
ance matrix Q. If Z is uncorrelated, i.e., if Q is diagonal, then its components Z;, ..., Z; are
independent. In contrast, this is not the case for a multivariate symmetric Laplacian random
variable X ~ SL4(Q).

One way to generalise this definition to an infinite-dimensional Hilbert space H would be to
seek a distribution whose characteristic function is given by

B(h)= ——— forallh e H,
1+ 5(Qh, W)y

16
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or to define an H valued random variable X via
X=Vwz,

where Z is an H valued Gaussian random variable with mean zero and W is exponentially
distributed with mean 1, respectively.

We do, however, want to generalise the 1-dimensional Laplace distribution to a multivariate
Laplace distribution whose density depends on its variable through a weighted 1-norm rather
than a quadratic form. So we do not want the distribution to be elliptically contoured. Also, we
want the components of a multivariate Laplacian random variable to be independent. This leads
to the definition of a Laplacian measure on R? as a product measure.

3.3 Laplacian Product Measures on R?

Finite Laplacian product measures are of interest not only for their own sake but also because
the definition of Laplacian measures on infinite-dimensional Hilbert spaces will be based upon
theirs. We want to define a probability measure £, o on R? for any a € R and any self-adjoint
positive Q € L(R?) in such a way that it has mean a and covariance operator Q.

Let Q € £(R?) be self-adjoint and positive definite and let ey, . . ., eg be an orthonormal basis
of H consisting of eigenvectors of Q, such that

Qer = Arer, fork=1,...,d,

with the associated eigenvalues A > 0. Now we define the Laplacian measure L, o on
(R?, B(R?)) as the pushforward

Lao=po Y_l

of the product measure
d
H= ® Lo ae-
k=1

under the isomorphism y: (xi, .. ., xq) 22:1 Xxrer, where
ar =(a,er) fork=1,...,d.
If a = 0 we again write L short hand for £, o.

Remark 3.2. Note that although we do not include the basis ey, . . ., e4 into the notation £, o,
the definition of the Laplacian measure does depend on its specific choice.

Letn <d, k; < --- < k, < d be positive integers. For every A € B(R") let I,
the cylindrical subset

k,.A denote

.....

T kpen = {Gcts o oxg) € RY 2 (g, .0, Xk, ) € A}
The product measure p has the essential property that

Pk, ..o okepid) = (Liayer) 20, X X Lia,er )2, ) (A)

17
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for all A € B(R"). Consequently,

La,Q({x € Rd : ((X, €k1), B (X, ekd)) € A}) = (/1 © Y_l)()/(lkl ..... kn;A))
= (Laklaflk1 XX Lakd,lkd)(A)

for all A € B(R"). The measure £, ¢ has the following basic properties.

Proposition 3.3. Leta € R? and Q € L(RY) be self-adjoint and positive. Then L, o has mean
a and covariance operator Q, i.e.,

[ Lac@)=a
Rd

/ (v, x—a)z,x —a)Lg o(dx) = (Qy.z) Vy,z€ RY.
R4

Moreover, its characteristic function L, o is given by

d
— . . 1
Lao(h) = / i) £, oldx) =@M | ————— VheR?
o) R4 ‘ oldx) = e D 1+ 2k(h, ex)?
Finally, if Q is injective, then we have
d
1 V2|(x — a,ep)|
L, (B)=—/eXp - ) ————|dx
© \24 detQ /B kZ{ VAk
1 d 1
= —/exp —\/52 |(Q_f(x— a), ek)| dx
V 2d det Q B k=1

for all B € B(RY).

Proof. For every y € RY we have

([ rtaans)= [mnfuo@o= [ e uow

= ) [ #Llaoin@) = Y (e ) = @)
k=1 R

k=1

by Proposition 3.1, which implies ./Rd xLa,0(dx) = a.
Next, we consider

= a2 Laol) = 37 Y (enens) [ (6 ae)c=a.e0 Loo

k=1 j=1

18
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for y,z € RY. As

[ o= a.e)tx -~ e Laoi)
= [ (0= @) (. e6) = (o)) Laot)
= ‘/[RZ ( ((1 e]))( X2 — ((1 ek))L(a ej),Aj (dxl)L(a ex), /Ik(dxz)

= (/R %1L(a,e;),2;(dX1) — (a, ej)) (/R %o L(a,ex), 2, (AX2) — (@, ex) | =

for j # k and

/ (x = @ e La.o(dx) = / (% = (@ ) La.epy. 20 (d5) = At
R4 R

by Proposition 3.1, we obtain

[ = antx -~ La o) - 3 S e 2) [ o= a.e)tx ~ e L)

k=1 j=1

= Z(y, ek)(Ek, Z)/lk = Z(y, Qek)(ek’ Z)
k=1 k=1

= Z(Qy, ex)(ex, z) = (Qy, 2).
k=1

Concerning the characteristic function of £, o, Proposition 3.1 yields

n

/ ei(h’x)La,Q(dx) _ / eiZzzl(x,ek)(ek,h)‘ga’Q(dx) — / l_l ei(x,ek)(ek,h)La,Q(dx)
Rd R4 R4

k=1
n i(a,ex)(ex,h)

n
= eiik(ek’h).L( ), A (d)}k) = —e
H/R e lk_:! 1+ 5Ak(h, er)?
_ i(ah)
=e€
l_[ 1+ lﬂk(h ek)2

for all h € RY.

In order to find the Lebesgue density of L, ¢, it is sufficient to consider measurable rectangles
in RY, ie., sets of the form R = B; X - - - X By with By, ..., By € B(R), since they generate the
product o-algebra B(R¢) on R?. Equivalently, we may consider the images of measurable
rectangles under the isomorphism y, which can be expressed as y(R) = {x € R : (x, ex)x €

19
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By for k =1,...,d}. Now, the definition of the product measure and a change of variables yields

Lao(y(R) = ﬁ Lia,ep), 0, (Bi) = ﬁ ( ! exp (—M) dfck)
’ k=1 S k=1 m By \//Tk

1 R \/§|J~Ck - (a’ ek)l ~
= — X - —|d
\/deetQ/Rep( kz_; Vi ) )
1 5 V2|(x, ex) — (a, ex)
_ _ dx.
V24 det O /y<R> o ( kZ{ VA )

Again we call an R? valued random variable Laplacian, if its probability distribution is a
Laplacian measure £, o on R?. We can write such a Laplacian random variable & as

d
&= Z Ekeks
k=1

where & ~ L, 5, are independent, real valued Laplacian random variables.

3.4 Laplacian Infinite Product Measures

Now we turn towards the case of an infinite-dimensional separable real Hilbert space H with
norm ||-|| and inner product (-, -). Let a € H and let Q € L(H) be a self-adjoint positive trace class
operator. We want to define a Laplacian product measure on H that has mean a and covariance
operator Q.

Since Q is trace class and self-adjoint, an orthonormal basis (ex)ren of H consisting of
eigenvectors of Q exists. Let (Ax)xen be the associated nonnegative eigenvalues in descending

order. Then we have
Qer = Arer  forall k € N.

We can identify H with the space ¢* of all sequences (xi )k ey of real numbers with Y37, [x¢|* < oo
via the natural isomorphism y: (> — H,

(XK )ken — Z Xiek. (3.1)
k=1

We will first define a Laplacian product measure on the space R* := []; | R of all sequences of
real numbers and then restrict it to £2. A subset of R is called cylindrical if it is of the form

Ikl _____ kA = {(xj)j € Roo : (xkl, .. .,xkn) € A},

wheren, k; < - -+ < k, are positive integers and A € B(R"). Let C denote the set of all cylindrical
subsets of R*. By [Klenke 2014, Remark 14.10], the Borel o-algebra generated by C coincides
with [}, B(R), which in turn is equal to the Borel o-algebra 8(R*) induced by the product
topology on R™ by [Klenke 2014, Thm. 14.8].
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3.4 Laplacian Infinite Product Measures

Now let ai := (a, ex) for all k € N and p := L, 3,. We define the product measure

0 0
= Qb= QLo
k=1 k=1

forall I, .. x,.a € Cby

.....

HTky o kensa) = (i X+ X i, )(A).

Then, by [Da Prato 2001, Thm. 1.3.3], the function p is o-additive on C and has a unique extension
to a probability measure on (R*, B(R*)).

Proposition 3.4. The measure yi is concentrated on €, i.e., u({?) = 1.

Proof. We have
AxiLak,Ak(dxk) = /R(Xk — ap)? — af + 2xga L, 2, (dxi)
=/1k—ai+2ai=/1k+ai

forall k € N. Note that yi. = L, 5, is the pushforward measure o p;l of 1 under the projection
pr: R® = R, x — xy, since

(1o pNA) = p(Ii;a) = Lag, 2, (A)

for every Borel measurable set A C R. Together with the monotone convergence theorem this
yields

[ = m [ wzn]xiuux): lim Z [, Awa

k=1
Z/xkzak adx) = > (e +a2) = TrQ + al” < oo.
k=1

This implies that ||-|| 2 is p-almost surely finite on R®. In other words, u(R® \ £?) = 0, and
therefore pu(£?) = 1. O

Proposition 3.5. Let R™ be equipped with the product topology and let £* be equipped with the
||-||, norm topology. Then B(R®) N €% = B(£?).

Proof. We know that B(R*) is generated by the cylindrical sets in R® and that B(£?) is gener-
ated by open balls in 2.

To prove the inclusion B(R®) N ¢* C B(¢?), consider the intersection I;, . n.m N €% of an
arbitrary cylindrical subset I, ,.» of R® with n € Nand M € B(R") and the space ¢?. The
projection Py,: {2 - R™ x + (x1,...,x,)! is continuous and hence measurable, so that

L.....nm N2 = PA(M) € B(62).
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3 Laplacian Measures on Hilbert Spaces

To prove the reverse inclusion, consider an open ball
Bp(x,r) := {y e l’: Z lye = xi? < rz}
k=1

in £2 with radius r > 0 around x € £2.It can be written as the union B2 (x, r) = |, en Ugz (x, r— %)

of closed balls ,
1 - 1
Up (x,r——) = {y el?: Z|)’k—xk|2 < (r— —) }
n pl n

Each closed ball, in turn, can be written as the intersection Up:(x, s) = (),,en Um Of closed sets

m
Un = {ye£2:2|yk—xk|2 SSZ}.

k=1

Up, is closed, since for every y € ¢2 \ Uy, the open ball B2 (y, t) with radius

m 3
t= (Z vk _xk|2) -s
k=1

is contained in the complement of U,,. Furthermore, each Uy, = A,,, N £? is the intersection of a
cylindrical subset

m
Am =1 m;Upm ((x1,..., xm)T,s) = {y €R™: Z |yk —Xk|2 = 32}
k=1

of R® and the space ¢2, so that U,, € B(R*) N ¢2. This implies that
Up(x,s) = () Un € BR™) N ¢2
meN

and hence also

1
Bp(x,r) = U Up2 (x, r— ;) € B(R®) N (2. |

neN

Propositions 3.4 and 3.5 show that the restriction of y to (€2, B({?)) is a probability measure.
In a last step, we define the Laplacian measure £, o on H as the pushforward

La,Q i=po )/_1 = (® Lak,/lk) o y_l
k=1

of y1 under the natural isomorphism y between ¢ and H defined by (3.1). Here we can also state
the inverse y~! explicitly as x — ((x, ex))xen-

Remark 3.6. Please be aware that, as in the finite dimensional case, the definition of £, o
does depend on the specific choice of the basis {ex }xen, even though we do not include it into
the notation.
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3.4 Laplacian Infinite Product Measures

Proposition 3.7. La,Q has mean a and covariance operator Q, i.e.,
[ ) Laoldn = (@) forally <
H

/(y,x —a)(z,x —a)L,, o(dx) = (Qy,z) forally,z € H.
H

Furthermore, its characteristic function is given by

Lao(h) = exp (l(a h) ]_[ forallh € H.

1+ 1Ak(h ex)?

Proof. For all x € H and n € N we define

n

P,x := Z(x, ex ek .

k=1
Then P,x — x forall x € H,

[P, )| < [I1Pax[lllyll < llxlIyl

forall x,y € H and x — ||x||||y]l is La,o-integrable, since

2
(/ IIXIllZa,Q(dX)) < /IIXIIZLa,Q(dX) =TrQ + [lal|* < co.
H H

This allows us to use Lebesgue’s dominated convergence theorem to obtain

/ (x,9) La.o(dx) = lim / (Pot. ) La.0(d)
H n—e Jyg

for all y € H. Furthermore, we compute

/H (Pax.y) Lao(dx) = /H ;u, 1) ek ¥) La.o(dx) = 1<ek,y> / % Loy a0 (d5)

k=

= Z(a, ex)(ex,y) = (Pna,y)
k=1

using Proposition 3.1. Now passing on to limits on both sides yields the first proposition.
Similarly,
|(Pa(x = @), y)(Pu(x = a), 2)| < |lx = al*[|ylll|z]

for all x, y,z € H and ||x — a||* is L,, o-integrable with

[ be=alLaotin = [ Z|<x—a 0 Lao(dv)

- f 1% — (@ 0l Lia.ep). 1 (d5) = Zak—TrQ

k=1
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3 Laplacian Measures on Hilbert Spaces

by the monotone convergence theorem and Proposition 3.1, so that

[ 6= ae - a2 Laoln) = lim [ (P =0 )P - a1.2) Lo old)
H n—e JH
for all y, z € H by Lebesgue’s dominated convergence theorem. If j # k, we observe that

/H(x —a,e;)(x —a,ex)La, o(dx)
- /I ((ere)) — (@) (G ) — (s 1)) La.0(d)

j,k;RZ
= </[RZ (fl - (a’ ej)) (32'2 - (aa ek))L(a,ej),Aj(dil)L(a,ek),/lk(d;CZ)
= (/R %1L(a,e).2,(dX1) — (a, ej)) (/R X2 L(a,e).2,(dX2) = (a, ex)| = 0

by Proposition 3.1, whereas

/ (x — @, e0)* La.o(dx) = / (x — 4, 1) La.o(dx)
H IR
- /R (% = (@ e)) Liaopy 1 (d5) = Ar.
This leads to
/H (Pa(it — @), Y)(Pulx — ). 2) La.o(d)
= 2 Ve Ner) [ (x-a.ex - a.e0) Luold)
k=1 j=1 H
= > 3 ex)ers Ak = ) (3, Qex)lex, 2)
k=1 k=1

= 30y e)ers 2) = (PaQy.2).
k=1

Letting n tend to infinity on both sides proves the second proposition.
Finally, we consider the characteristic function of £, . As leih-Pn¥)| < 1forall x, h € H and
n € Nand /H 1L, 0(dx) = 1, it follows from Lebesgue’s dominated convergence theorem that

Laoh) = / "% £, o(dx) = lim / e Pn¥) £, o(dx)
H n—oo H
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3.5 Admissible Shifts

for all h € H, where

n

‘/H ei(h’P"x)La,Q(dx) = /H eiZ’t=l(x’ek)(e’<’h)£a,Q(dx) - / ei(x,ek)(ek’h)La’Q(dx)

Hpo
n o iaenerh)

n
= eX M £ ,d%) = | | ———
]_I/R o b 1+ 3 Ak(er, b)?

_ _i(Ppa,h)
- n 1+ 1/1k(ek, h)?

by Proposition 3.1. Forming limits on both sides yields

_ i(a,h)
L, Q(h) e l_[ —1 N 1/1k(h o) forall h € H. O

Similar to the finite-dimensional case we call an H valued random variable Laplacian, if its
probability distribution is a Laplacian measure £, o on H. We can express such a Laplacian
random variable & as a series

£= ) e,
k=1

where & ~ L, 5, are independent, real valued Laplacian random variables.

Since there is no Lebesgue measure on infinite-dimensional Banach spaces, we cannot state a
density in the same way as in the finite-dimensional case. We will, however, be able to state the
density of £, o with respect to Lo.

3.5 Admissible Shifts

Now we address the question for which a € H the measure £, ¢ with mean a is absolutely
continuous with respect to the centred measure L.

If H is finite-dimensional, then £, ¢ and L are equivalent for every a € H and we can state
the density

dLao _ exp(-V2 5L, Q7 (x ~ a).ex))
dLo  exp(~V2 T{, Q7 x.e)))

d
|(x — a, ex)| — |(x, ex)
vy lrmael e

directly as the quotient of the densities of £, ¢ and Lo. If, on the other hand, H is infinite
dimensional, this does not have to be the case for all a € H, as we have seen for the Gaussian
measure in Section 2.3.

We will derive a criterion similar to Theorem 2.4 and show that, as in the Gaussian case, £, o
and Lo are equivalent if a € R(Q"?) and singular otherwise. We will do this using a result by
Kakutani characterising the equivalence of infinite product measures using Hellinger integrals.

=exp |-
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3 Laplacian Measures on Hilbert Spaces

Let p and v be probability measures on (H, B(H)). Then the Hellinger integral of 1 and v is

defined by
dp dv
H(u,v) = / ——d{,
0= JyNagag®
where { is a probability measure on (H, 8(H)), such that both y and v are absolutely continuous
with respect to {. Such a reference measure is always given by { = %(u + v) and the integral

does not depend on the choice of . If y and v are equivalent, then we have
dv _ dv
d¢  dpdl

and can therefore express the Hellinger integral of y and v as

dvdy / dv
Huv) = | |2 %= [ |y,
(k) /H\/dudg @

without the need for a reference measure .
We take a look at the Hellinger-integral of Laplacian measures on R.

Example 3.8. For a € R and 1 > 0, we have

d _Af7 lx=al=lx]
La,/l V2 A ,

(x)=¢e

and a straightforward computation yields
_be-al-lx| lal
H(-L/l’-Ea,A) = / e V22 L(dx)= (1 + ﬂ) e V22 > 0.
R V22

The following result by Kakutani allows us to use the Hellinger integral to draw conclusions
about the equivalence of infinite product measures. Its proof can be found in [Kakutani 1948].

Theorem 3.9 (Kakutani). Let (pr)ken and (vi)ren be sequences of probability measures on
(R, B(R)), where py and vy are equivalent for all k € N, and define the product measures

H= ®ﬂk, V= ® Vk
k=1 k=1

on R*™. Then,

H(uv) = [ | Hue o).
k=1

Moreover, the following alternative holds.

(i) IfH(u,v) > 0, then p and v are equivalent and the Radon—Nikodym derivative is given by

dv = dv
—) =[] Eex)
dy roy dHk

p-almost everywhere.
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3.5 Admissible Shifts

(ii) If H(u, v) = 0, then u and v are singular.

We apply Kakutani’s theorem to Laplacian measures on H. Note that the range of Q"2 is
given by

o fon 55
(Q?)=4qaeH: - <oop.

A
k=1 "7

Theorem 3.10. (i) Ifa ¢ R(Q%), then L, o and Lo are singular.

dLa 0
d

(ii) Ifa € R(Q%), then L, o and Lo are equivalent and the density 7o is given by

dLao
dLo

(x) = exp (—\/Ei (’(Q_%(x - a), ek)‘ - ’(Q_%x, €k)’))
k=1

O Ik — agl = Il
—exp|-V2 )y —— %
( ,Z{ Vi
Lo-almost everywhere, where xi. := (x, ex) and ay := (a, e) for allk € N.

Proof. We apply Theorem 3.9 with vy := L, ;, and piy := £, forallk € N.Then £, ¢ = voy™
and Lo = poy~!, where y(x) := Y3 xre for all x € £2. From Example 3.8 we know that

=) 0 |ak| ) _|a21/<1|)
H(u,v) = H(yp, vi) = 1 e k.
(1 v) kl :1| (1> Vi) | |(( + Nom

k=1

We consider

|ak| ( |ak| ))
—InH(y,v § R Il + 3.2

and note that H(p, v) > 0 if and only if this series converges. By the alternating series test, the
first partial sum S; = t of the Mercator series

© k
In(1+ t) = Z(—nk“% Vi € (-1,1]
k=1

satisfies the error bound ,

t—ln(1+t)$% Vt € [0,1).

Also, we can show that
A S
t-Inl+t)> —-—>— Vte[o,1).
(0> -Z2= Ve[
To this end, we note that we have equality for t = 0 and that the derivative computes as
2 3\ #3

t
t—-Inl+t)—-—+—] =—— >0 Vte]0,1).
2 3 1+t
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3 Laplacian Measures on Hilbert Spaces

From these two estimates we obtain

% _ |4l —ln(1+ |ak|)<i (3.3)
2Ak ~ 22, - ’

for all k € N. , ,
For a € R(Q"?) we have P % < oo and thus in particular ;—"k — 0 as k — oco. Now we

can choose N € N such that 1%L < 1 for all k > N. This yields

V2Ak

N-1 00 2
|ag| |ag| 1\ %
—InH(p,v) < ( —In(1+ + = — < oo,
kZ; V2 Xk Vere)) 4 ,;V Ak
which implies H(, v) > 0. Now Kakutani’s theorem guarantees equivalence of y and v in case
that a € R(Q'?) and, together with Example 3.8, states that the density of v with respect to 1 is
given by

dV 00 de (e _\/§|xk—a§|—\xk\ _\/52;11 \xkfa,;\flxk\
@(x)— dp_k(xk)_rle Vie  =e Vi

k=1 k=1

If, on the other hand, we assume that —In H(p, v) < oo for a ¢ ?(Q%), we have

laxd —1n(1+ laxd )—>o
V2Ak V2%

2
as k — oo by (3.2). Using (3.3), we obtain that ;Tkk — 0 as well, which again allows us to choose

N e N such that \I/az_le < 1for all k > N. However, since a ¢ R(Q%) we have
k

N-1 00 2
|a] |ag| 1 o
—InH(p,v) > (——ln 1+ —||+—= — = oo,
g V2Ak V2Ak 12 ,;VAk
which is a contradiction. So H(, v) = 0, which implies that y and v are singular.
By Proposition 3.4, R® \ ¢? is a null set both under y and v. Therefore the equivalence or

singularity of y and v on R™ transfers to their restrictions to £2. In a last step, we show that it
further transfers to Lo and £, o. Assume that v < p. Then for every A € B(H) we have

Loo@=0oy = [ Loouan = [ @) Lot

y~'(A)

_ /AeXp (_@ 3 G — (@ el = | ek)|) Lol
k=1

Vax

This shows that £, ¢ is absolutely continuous with respect to Lo and has the stated density. A
similar computation shows that y < v implies Lo < £, 0.

Finally, assume that y and v are singular and let A € B(£?) such that p(A) = 0 and v(£?\ A) = 0.
Then Lo and L, o are singular as well, because

Lo(y(A) = (Lo y ™ H(y(A) = p(A) =0
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3.5 Admissible Shifts

and

La,oH\y(A) = La,o(y(t*) \ y(A) = Loy (¢ \ A) = v(£* \ A) = 0
by the surjectivity of y. O

Now we show that the space of admissible shifts is a null set under Lo.
Lemma 3.11. We have LQ(R(Q%)) =0.

Proof. For any n, k € N we define

>J|Q<N
H_/

wepen

2 2
U"’k:{yEH:Z)L_{<n2}'

j=t
Then R(Q%) = U, en Un and the sets U, are ascending, which yields
1 .
Lo(R(QY) = lim Lo(Uy).
Furthermore, U, = (ren Un.k holds for all n € N and the sets U, i are descending in k. So it is
enough to show that

Lo(Up) = klglgo Loy x) = 0.

We substitute and estimate,

LoChi)= [ o <n}]_l1.a = [ e <n2}l—[£1(dy]

_L ez )
= Lug, (dy) = / =y
/{y€R2k=||yllz<n} " {yeR®*:||ylla<n} \/22
1
< — dy
{yeRr2*:||y | <n}
where Id,; denotes the identity on R?*. This implies
k
1 (7n?
LoUnr) < o (7)

because the Lebesgue measure of the Euclidean 2k-ball with radius n is n?* Z k—k see, e.g., Example
8.7.11 in [Benedetto 2009]. It follows, that limy_,o U, x = 0. O
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4 Variational Characterisation of MAP
Estimates

We return to the setting described in Chapter 1. Let X and Y be separable Banach spaces, each
equipped with its Borel o-algebra. We assume that for y € Y the posterior distribution p” is
absolutely continuous with respect to the prior distribution i and that its density is given by

M u) = exp(—‘I’(U, y))
duy /X exp(—D(t, y))dpo(t)

where ®: X X Y — R is a measurable function. Throughout this chapter, we will consider the
posterior for a fixed value y € Y and regard ®(u) = ®(u, y) as a function of u exclusively.

Lo-almost surely, (4.1)

4.1 Maximum A Posteriori Estimates

A common way to define an estimator for the posterior is by considering modes of the posterior
distribution, i.e., points that maximise the posterior probability in an appropriate sense. For a
separable Banach space X, the following definition of a MAP estimate has been introduced in
[Dashti, Law, et al. 2013]. Let B.(x) € X denote the open ball with radius ¢ centred at x € X.

Definition 4.1 ([Dashti, Law, et al. 2013, Def. 3.1]). Let i be a probability measure on X. A
point @ € X is called mode of p, if it satisfies

(B (1))

2 P B ) (4.2

A mode of the posterior distribution p? is called maximum a posteriori (MAP) estimate.

If the space X is finite-dimensional and the prior distribution y has a density with respect to
the Lebesgue measure, we can express this density in the form exp(—R(-)) with a function R:
X — R U {co}. Consequently, the Lebesgue density of the posterior distribution ' is given by

u — exp(—P(u) — R(u)).

In a finite-dimensional setting, MAP estimates are usually defined directly as maximisers of the
posterior density or, equivalently, as minimisers of

u+— O(u) + R(u). (4.3)

If both ® and R are continuous, then this definition coincides with Definition 4.1. Also note
that Definition 4.1 is a global definition in the sense that it excludes points which maximize the
posterior density only locally and not globally.
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4 Variational Characterisation of MAP Estimates

In an infinite-dimensional setting, in contrast, the posterior distribution does not have a
canonical density due to the lack of a Lebesgue measure. We only have its density with respect
to the prior distribution. This gives rise to the question how to define a generalised posterior
density in a canonical way, such that its maximisers are precisely the modes of ;1 according to
Definition 4.1. A natural candidate for a generalised logarithmic density is the Onsager—Machlup
functional, which in our context is defined by the asymptotic probability of small balls around
two points.

Definition 4.2. Let y be a probability measure on X. Let E C X denote the set of all admissible
shifts for y that yield an equivalent measure, i.e., all h € X for which the shifted measure

p = p(- = h)
is equivalent with p. A functional I: E — R is called Onsager—-Machlup functional of p, if

lim .U(Bs(hl)) —
€0 :u(Be(hZ))

Note that this property is only required to hold for all points from a subset of X, whereas, in
general, the limit does not exist for all iy, h, € X.

exp (I(hy) — I(hy)) forall hy, hy € E.

4.2 Bounded Potential

It was shown in [Dashti, Law, et al. 2013] that in case of a Gaussian prior and under certain
conditions on the potential ¢ the Onsager—Machlup functional of the posterior distribution
¥ is indeed of the form (4.3) and that MAP estimates can be characterised as its minimisers.
We briefly recapitulate these results here for a separable Hilbert space X, even though they are
valid for any separable Banach space.

Let the prior follow a centred Gaussian distribution yp = Np with covariance operator
Q € L(X). We assume that Q is self-adjoint, positive definite and trace class. Then, by Theorem
2.4, the space of admissible shifts is given by the Cameron-Martin space E := R(Q%) of po,
which we equip with the norm ||A|| := ||Q_%h||x.

We make the following assumptions on the potential .

Assumption 4.3. (i) For every ¢ > 0, there is an M = M(¢) € R, such that for all u € X,

Ou) > M — e [[ull -

(ii) @ is bounded from above on bounded sets, i.e., for every r > 0, there exists K = K(r) > 0,
such that for all u € B,(0), we have

d(u) < K.

(iii) @ is Lipschitz continuous on bounded sets, i.e., for every r > 0, there exists L = L(r) > 0,
such that for all u, v € B,(0), we have

|®(u) — ()| < Llu-vllx.
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4.3 Unbounded Potential

These assumptions are, for instance, satisfied for the potential @ resulting from the heat
equation with finite-dimensional data and Gaussian noise, see Section 3.3 in [Dashti and Stuart
2017]. The following theorem yields the Onsager—Machlup functional of p¥ and show that it
has a minimiser.

Theorem 4.4 ([Dashti, Law, et al. 2013, Thm. 3.2]). If® satisfies Assumption 4.3, thenI: X —
R := R U {0},

Iw) = o) + llully  ifu €k,
Y e ifue X \E,

is the Onsager—Machlup functional of p1”.

The second term R(u) := %HullfE of the functional I can be interpreted as a generalised
logarithmic prior density, since R is the Onsager—Machlup functional of the prior distribution
Lo by Corollary 2.6.

Theorem 4.5 ([Dashti and Stuart 2017, Cor. 1]). If ® satisfies Assumption 4.3 (i) and (iii) and
1Y (X) =1, then there exists i € E such that

I(@2) = inf{I(u) : u € E}.

The main result of [Dashti, Law, et al. 2013] now shows that a point € X is a minimiser of
the Onsager—Machlup functional of ¥ if and only if it is a MAP estimate.

Theorem 4.6 ([Dashti, Law, et al. 2013, Thm. 3.5]). Suppose that Assumption 4.3 (ii) and (iii)
hold. Assume also that there exists an M € R such that ®(u) > M for anyu € X.

(i) Let z° = argmax, _y u¥ (Bs(z)). There is a z € E and a subsequence of {z°}5-¢ which
converges to z strongly in X.

(ii) The limit z is a MAP estimate and a minimiser of I.

Corollary 4.7 ([Dashti, Law, et al. 2013, Cor. 3.10]). Under the conditions of Theorem 4.6, we
have the following.

(i) Any MAP estimate, given by Definition 4.1, minimises the Onsager—Machlup functional I.

(ii)) Any z" € E which minimises the Onsager—Machlup functional I is a MAP estimate for the
measure p¥ given by (4.1).

4.3 Unbounded Potential

As we will see in Section 5.4, the heat equation with Laplacian noise leads to a potential ® that
is even globally Lipschitz continuous, but not bounded from below, as required in Theorem 4.6.
Motivated by this, we will show that a variational characterisation of MAP estimates is possible
without this assumption in case that @ is globally Lipschitz continuous.
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4 Variational Characterisation of MAP Estimates

Assumption 4.8. The function @ is Lipschitz continuous, i.e., there exists an L > 0, such that
|®(u) = P(v)| < L|lu—v||x forallu,v e X.
We first note that this assumption implies the previous assumptions on .
Lemma 4.9. If® is Lipschitz continuous, then it satisfies Assumption 4.3.

Proof. By the Lipschitz continuity of @,
L
O(u) + ¢ [lully > (0) — Lilull + ellull = ®(0) + ¢ (Ilullx - ;) llullx

holds for all ¢ > 0 and u € X. Now the minimum of the function f: R — R, f(t) = &(t — %)t is

L 5o that for given ¢ > 0 condition (i) is satisfied with

attained in o
£

2
M = ®(0) + f (256) = @(0) - i—g

Condition (ii) is satisfied with K := Lr by the Lipschitz continuity of ®, as
®(u) < L|lullx <Lr=K
for all u € B,(0). Condition (iii) is trivially satisfied. O

We proceed similar as in the proof of Theorem 4.6 and Corollary 4.7. For this, we require
a series of Lemmas about small ball probabilities under the Gaussian prior measure . The
following two Lemmas are valid for centred Gaussian measures on a separable Banach space X.

Lemma 4.10 ([Dashti, Law, et al. 2013, Lemma 3.6]). Let & > 0. Then we have
po(Be(w)) _
Ho(B.(0)) —

forallu € X and a constant a; independent of z and ¢.

a a 2
e et - (llullx—e)

Lemma 4.11 ([Dashti, Law, et al. 2013, Lemma 3.7]). Suppose that @ ¢ E, {u.}.~o C X and that
ue, converges weakly to i in X for {e,}nen C (0, 00) with e, — 0. Then for any § > 0, there exists

n € N such that
Ho(Be,, (ue,)) <5
)UO(BS,, (0))
Lemma 4.12. Letu € X and ¢ > 0. For alln € N and x € X define the projections P,: X — R",

an = ((x’ 901)X, ey (x’ QDn))T-
Moreover, for everyn € N let A, be the cylindrical set
A, = {x € X :Pyx € B,(Pou)},

where B¢(Pyu) := {x € R" : ||x — Pyull; < €} denotes an open ball in R™. Then for every § > 0
there exists an N € N such that

to(Be(u) A Ay) <6 forn >N,

where A denotes the symmetric difference.
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4.3 Unbounded Potential

Proof. First, we note that po(B:(u)) = po(B:(u)) and
po({x € X : Ppx € Be(Pyu)}) = 1o(An) = p1o(A,) foralln e N.

Next, we show that the sets A, decrease to B, (u). It can easily be seen that ADA, D ...
holds and that B.(u) c A, for all n € N. In order to see that (,_; A, = B.(u), we consider a
point x € X \ B.(u). Then, p := ||x — u||> — €2 > 0 and we can choose a K € N such that

K
l|Pxx — Prull; = ZKX —u, or)x|* = |lx —ull® - E=gs g >

k=1 2

This shows that Pxx ¢ B,(Pxu). Therefore, x ¢ Ag and in particular x ¢ Mt A,
As a probability measure, g is upper semicontinuous by [Klenke 2014, Thm. 1.36], so that

po(An) = Ho(B(w)) asn — co.
For every § > 0, this allows us to choose an N € N such that

po(Be(u) & Ap) = po(An \ Be(u)) = po(An) — po(Be(u)) <6 forn > N. o
The following statement is a generalisation of Lemma 3.9 in [Dashti, Law, et al. 2013].

Lemma 4.13. Suppose that {u,, }nen C X converges weakly but not strongly tou € E for
{en}tnen C (0, 0) with e, — 0. Then for every § > 0, there is an n € N such that

,UO(Ben (usn))
,UO(Ben (O))
Proof. Let § > 0. Let {¢k }xen be an orthonormal basis of X consisting of eigenvectors of Q, let

{Ak }ken be the associated eigenvalues in descending order and define a; = ﬁ for all k € N.
Furthermore, we define uy := (u, px)x and

< 4.

. T
Pku = (ul’u27' N ',uk)

for all u € X and k € N. For the measure iy, := pio © P! on R™,

M

holds for all M € B(R™) by [Bogachev 1998, Prop. 1.2.2], where C,, = ((27)™ [}, Ae)7V2,
Since u,, converges weakly and not strongly to i, we have

llrl;ll)lgolf”ugn”X > |il|x.
Therefore, ny € N and ¢ > 0 exist such that

”ugn”i > |la|l% + ¢ foralln > no.
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4 Variational Characterisation of MAP Estimates

CZ
We choose A > 0 such that e= %4 < g and K € N such that a; > A% forall k > K. Form > K
and n € N we consider

Ho, m(Bgn (0)) = / e‘%(alxlz+---+amx,2n)dx
Be,, (0)

n

. / e b4 (k%)
B, (0)

. —§(a1x12+~~~+aKx§<+(aK+1—A2)x§<+1+~~~+(am—A2)x,2n)dx

(')

g_m/ ——A (xK+1+ +xm)‘u0 (dx)
Cm JBe,(0)

Cm _1y4
> A—m A en’ /10 m(Ben(O))

Cm

where
o) = G [ b osonsie(onaas o slon4)5)
’ M

for all M € B(R™). Note that Jiy_, is a centred Gaussian measure. The weak convergence
implies (u,,, px)x — (@, px)x for all k € N. Therefore, we can choose n; > ng such that for all
n = ny,

K
D (e 0% — (@ 1)) <

C
k=1 3

and consequently

Z(ug,,,qowx lie, I3 — Z(ugn,gok)inuan Z(ugn,mx

k=K+1

K
+ D (@ o)k = (e, 00)%) + Z (@ o) > 2.
k=1

k=K+1 3

Finally, we choose n > n; such that ¢, < % and p > 0 such that

5 o
(E + 1) p < Eluo(BEn (0)).

By Lemma 4.12, there exists an my > K for the balls B, (0) and B,, (u,,) such that the cylindrical
sets
Ap = Pr_nl(Bfn (Pm0))) and A, = Pr_nl(Ben (Pmue,))

satisfy po(B, (0) & Ag) < p and po(B, (ue,) & Ay) < p for all m > my. Note that here, B, (P,,u)
denotes an open ball in R™ for ¢ > 0 and u € X. It follows that

,UO(BEn (uen)) < ,UO,m(Ben (Pmuen)) t+p

and
HO,m(Ben (Pmo)) < PO(BS,, (O)) +p.
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4.3 Unbounded Potential

In a last step, we choose m > my such that

- c
D (e gnl = 2

k=K+1

By Andersons’s inequality (see Theorem 2.8.10 in [Bogachev 1998]), we have

ﬁO,m(Ben(Pmusn)) < ﬁO,m(Ben(O))-
By the choice of n and A, this leads to

C -
By (Pt ) = 2 /B LR,
m n mufn

Cmi _1a2(c_. V2
< 5—m€ 14%(5~¢n) llo,m(Ben(Pmugn))
m
C,, —1a2(_ -
<ot (52en) 15 (B, (0))

) J
<e 36A2y0,m(Bgn(0)) < E,Uo,m(Bsn(O))'

Consequently, by the choice of my and p we have

By 0e,) < 3 0B, (00 p) + p = Syl 00 + (5 41)

o 1)
< EﬂO(Bs,,(O)) + Eﬂo(Ben(O)) = S10(Be,, (0)). o

The proof of the following lemma was kindly provided by Masoumeh Dashti (personal
communication, 3 July 2017).

Lemma 4.14. Let ¢, > 0 foralln € N and e, — 0 asn — oo. Assume that {uy}nen C X
converges towards i € E with respect to ||-||x. Then

. Ho (Ben (un ))
limsup” Be@) = -

Proof. First note that Z = Q(X) is dense in E = Q%(X ), and that for every w € Z the linear
functional Wo-i2,, = (O7'w, -)x is continuous. Now, by the Cameron-Martin theorem and
Anderson’s inequality,

polBe, ) = [

B, (up—w)

exp (—||w||§ HW (v)) 1i6(dv)

2w

< e 2lwliE sup ) {exp((Q7"'w, v)x)} po(Be, (un — w))

VEB, (Up—wW

<e 2™l sup {exp((Q'w. 0)x)} (B, (0))

vEB,, (Up—w)
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4 Variational Characterisation of MAP Estimates

holds for all w € Z and n € N. On the other hand, the symmetry of B,, (0) implies

io(Ba, (@) = ¢~ 11 /

w d
[ W1 ol
. 1
_ ozl ‘/Bé_" o 5 (exp(WQ%ﬁ(v)) + exp(—WQ,%a(v))) Ho(dv)
> e~ 2140 1o (B, 0)).
Using the continuity of (Q~'w, -)x we obtain
B _
lim sup 'uO(E—"(u_n)) < ezlallE=2IwlE Jim sup sup  exp((Q7'w,v)x)
n—oo ,UO(Ben (u)) n—o0 VEB,, (Un-w)
= ez 17IE=21WIIE exp((O7'w, @ — w)x)

= ez 181E=21WIIE exp((w, @ — w)p)

for all w € Z. In particular, if we consider a sequence {w;}jeny C Z with w; — @ in E as j — oo,

the previous estimate leads to

B, (un

nooo  Ho(Be, (@) ~

Now we are able to prove the main results of this chapter.

Theorem 4.15. For everye > 0 let u, € X be a maximiser of u — ¥ (B.(u)), ie.,
¥ (Be(ue)) = max p? (B ().
ueX

If ® is Lipschitz continuous, then the following holds true:

(i) For every positive sequence {e, }nen With €, — 0, the sequence {u,, }nen contains a subse-
quence that converges in X towards some i € E.

(ii) Every cluster point i € X of {u,, }nen satisfies

L PBL@)
n—oo lly(Ben(usn))

and minimises the Onsager—Machlup functional of u¥.
(iii) Every cluster point i € X of {u,, }nen is a MAP estimate.

Proof. We proceed along the lines of the proof of Theorem 3.5 in [Dashti, Law, et al. 2013].
Without loss of generality, we may assume that ®(0) = 0, because adding a constant to ® is
absorbed by the normalisation constant Z, while the measure py? remains the same.

Ad (i): First of all, we show that {u,, } ,en is bounded in X. Then

|(w)] = [P(u) — (0)] < Lfjullx
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4.3 Unbounded Potential

for allu € X, where L denotes the Lipschitz constant of ®. From this we obtain, using Anderson’s
inequality, that

1
' (Be(ue)) = Té‘g‘/ p? (dv) = max Ee_q)(“)yo(dv)

B.(u) u€E JB,(u)

1 1
>3 [ o) g [ et
Z JB.(0) Z JB.(0)

%e—Lmo(Bg(o»

[\

with Z = /X exp(—®(v))uo(dv) as before. On the other hand,

1 o 1 .
1 (Bo(w)) = / M y(do) < / M0l 4o (do)
Bs(“) Be(“)

< %eL(”“”X”)ﬂo(Be(u))
holds for all u € X. Altogether, this yields
Ho(Be(ue)) > Ze MIelx* Y (B, (u,)) 2 e Hltelx*2) (B, (0))
for all ¢ > 0. However, Lemma 4.10 says that there is an a; > 0 such that

po(Bete) i (ju, | -2c)
po(B£(0))

for all ¢ > 0. Assuming that {u,, },en is unbounded, i.e., that there is a subsequence, again
denoted by {u,, }nen, With ||u,, |[x — co as n — oo, leads to a contradiction, because

D (e, 112 = 2en) = L (Ilue, || + 2¢0)

ay a
= (e, Il = L) llae | = 2 (5 + L) & — o0
as n — oo, which implies
2
o Llluenllv2en) 5 =% ([luen |y=2¢n)

for sufficiently large n. So {u,, }nen is bounded and therefore contains a subsequence, again
denoted by {u, } nen, which converges weakly towards some @ € X as n — co.
Now, we show that @ € E. By definition of u, and the boundedness of {u,}.~¢ we have

P Bel)) _ S €M) L) (5 )
CoB0)  f e @p(do) T et po(Be(0)

_ eL(””f ||X+25)#0(B€(u£)) < eL(R+zgl)H0(Be(us))
Ho(B:(0)) — Ho(B:(0))

(4.4)
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4 Variational Characterisation of MAP Estimates

foranR > 0 and all 0 < € < &. If we assume that @ ¢ E, then Lemma 4.11 tells us that there is
an n € N such that p(B,, (1., ))/po(Be,(0)) < %e_L(R”“) and consequently

‘uy (BE (ugn )) l
¥ (B, (0)) ~ 27

IA

which poses a contradiction. So # € E.
Next, we show that u,, converges strongly in X. Suppose it does not. Then Lemma 4.13
applies and yields
. o Ho(Be, (ue,))
liminf ———————= =0,
n—o Jio(B,,(0))
which is contradictory to (4.4). So the subsequence {u,, }»,en does indeed converge strongly to
u€E
Ad (ii): Let {u,, } nen denote the subsequence that converges towards the cluster point @ € X.
First, we show that
L wB,@)
n—oo 11¥(B,, (e,))

By definition of u, and the Lipschitz continuity of ® we have

O(up)-0(v)
| < W Be(ue)) e<1>(12)7<1>(ug)/35(us) ¢ #o(dv)
Hy(Bg(a)) /1‘35(11) e@(ﬁ)—@(v)’uo(dv)
< eL”uE_l_l”XeZLé‘ :uO(BE(ug))

Ho (Bs (L_l)) ’

for all € > 0 and consequently, by the convergence u,, — % and Lemma 4.14,
1 (B ) _

1< limin —— < limsup M
n—eo 1Y (B, (1)) n—oco 1Y (Be, (1))

< lim sup ,UO(Ben (usn))
B n—oo ﬂO(Bé‘n (L_l))

<L

Next we show that # minimises the Onsager—Machlup functional I of ;Y. By Theorem 4.5 a
minimiser u* € E of I exists. If we suppose that @ was not a minimiser of I, then I(#) — I(u*) > 0,
and thus

1< lim ,uy(Bsn(uEn)) - lim ,uy(Bsn(uen)) lim ﬂy(Bsn(a))
"~ onoeo pY(Be,(u*))  noeo pY (B, (@) n—eo p¥(Be, (u*))
=lexp(I(u”) — I(a)) < 1,

by the definition of u, and Theorem 4.4, which poses a contradiction.
Ad (iii): It remains to show that @ is a mode of p”, i.e., that for every positive sequence

{8n}nen With §,, — 0 we have
p (Bs,, (1))

A v By, o)) *5)
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4.3 Unbounded Potential

To this end, we choose an arbitrary subsequence of {5, },en, again denoted by {5, }nen- Then,
by (i), there exists a subsubsequence, again denoted by {J, }ren, such that us, — i for some
21 € E. Moreover, by (ii), the limit # minimises I and satisfies

B, (@)
n—eo 1Y (Bs, (us,))
Since # minimises I as well by (ii), this implies
w8, @) _ . W Bs, @) - pBs, @)

noo 17 (By, (us,)  noseo 1Y (By, () noseo u¥ (B, (us,))
=exp(I(zt) — I(@))1 =1

for the subsubsequence {J, },en by Theorem 4.4. Now (4.5) follows for the original sequence
{8n}nen from a subsequence-subsequence argument. m|

Corollary 4.16. If ® is Lipschitz continuous, then i € E is a MAP estimate if and only if it
minimises the Onsager—Machlup functional I of p”.

Proof. Let 6i be a mode of p”. By Theorem 4.15 # is also a mode, so that

. Y (Be()) Y pY (Be(@)) .. pY(Be(ue)) _
0 Be@) 0 1 Belar) o o Bo@)

And because @ is Lipschitz continuous, we have

. B(i1)—D(v)
P Be(@) _ aa)-ata) Js.ar€ Ho(do) < oLla-alix 2L S (i Fo(@0)
py(BS(a)) & (IZ) e(b(ﬁ)_cb(v)‘uo(dv) - ‘/1'3 (a) ,uo(dv)

This implies @ € E, as otherwise Lemma 4.11 leads to

T 1 (Be (1)) Llla—allx 15 : ,UO(Bs(ﬁ))_
P By = L Ba@)

a contradiction. Now Theorem 4.4 yields

i P (Be(@)

F o B@)

= exp(l(a) — I1(2)),
and consequently I(z2) = I(4).

Conversely, let u* be a minimiser of I. Since # from Theorem 4.15 is also a minimiser and a
mode, Theorem 4.4 tells us that

B B | (@)
e—0 ﬂy(Bg(ue)) -0 ;ly(Bg(ﬁ)) e—0 :uy(Bs(us))
=exp(I(#) — I(u"))1 = 1. O
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5 A Severely lll-posed Linear Problem with
Laplacian Noise

In this chapter we will study a generalised form of the inverse heat equation in a Bayesian
setting. Roughly speaking, we will consider the operator equation

y=Ku+ng

with additive Laplacian noise 7, a centred Gaussian prior u and a linear operator K between
two separable Hilbert spaces X and Y whose eigenvalues A; decay in the order of exp(—pk%)
for some p > 0 and d € N. We will determine the conditional distribution of the unknown u
given the data y via Bayesian inference as described in Chapter 1. This problem was studied in
[Dashti and Stuart 2017] with Gaussian instead of Laplacian noise.

We will proceed as follows. First we will give some background on Laplace-like operators,
their functional calculus and Hilbert scales. Then, we will state the considered problem setting
in detail and point out the connection to the inverse heat equation. Subsequently, we will derive
the posterior distribution, determine the CM and MAP estimators and study the consistency of
the MAP estimator.

5.1 Laplace-like Operators

5.1.1 Definition and Basic Properties

We will use real powers of a Laplace-like operator to model the smoothness of both the noise 7
and the prior u in terms of the Hilbert scale it induces. Let A be a linear operator in a separable
Hilbert space X. We make the following assumptions on A:

Assumption 5.1. (i) The operator A is densely defined, i.e., its domain D (A) is dense in X,
and A is invertible.

(ii) A is self-adjoint, i.e.,
D(A) = D(A") :={y € X : x > (Ax, y)x is continuous on D(A)}

and
(Au,v)x = (u,Av)x  forall u,v € D(A).

(iii) There exists an orthonormal basis {@ }xen of X consisting of eigenvectors of A, i.e.,

A = axpy  forall k e N.
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

(iv) The eigenvalues {ay }xen are positive, ordered to be non-decreasing and there are C;. >
C_ > 0 and d € N such that

C_kd < ap <Cykd forallk e N.

We call operators that satisfy Assumption 5.1 Laplace-like operators. It follows from As-
sumption 5.1 (iv) that A is unbounded, but as a self-adjoint operator, A is at least closed, see
[Werner 2007, Thm. VIL.2.4]. In the following two lemmas, we show that, without loss of gen-
erality, we can weaken Assumptions 5.1 (i) and (ii). In Assumption 5.1 (ii), we may replace the
self-adjointness of A by symmetry, i.e. we can drop the requirement D(A) = D(A*), and in
Assumption 5.1 (i), the invertibility of A can be replaced by surjectivity (see Corollary 5.4 below).

Proposition 5.2. Let A be a densely defined operator in X that satisfies Assumptions 5.1 (iii) and
(iv). If, in addition, A is symmetric, i.e.,

(Ax,y)x = (x,Ay)x forallx,y € D(A)

then the spectral decomposition

Ax = Z ar(x, Qr)x Pk
=

holds for all x € D(A) and A is injective.

Proof. Since {¢g }ren is an orthonormal basis of X by Assumption 5.1 (iii), we can decompose
Ax € X for every x € D(A) into

Ax = Z(Ax, Pr)X k-
k=1
Now the symmetry of A together with the fact that {¢y }ren are eigenvectors of A yields
Ax = Z (%, Apr) x ok = Z ak (x, o) x ¢ forallx € D(A).
k=1 k=1

We also obtain

| Ax||3 = Z !(Ax, ‘Pk)x|2 = Z a; f(x, <Pk)x|2 for all x € D(A). (5.1)
k=1 k=1

Now injectivity follows from Assumption 5.1 (iv), as

- 2
lAxll% = a? > |ee x| = CP llxllk (5.2)
k=1

for all x € D(A). O
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5.1 Laplace-like Operators

Proposition 5.3. Let A be a densely defined, symmetric operator in X that satisfies Assumptions
5.1(iii) and (iv). If, in addition, A is surjective then A is continuously invertible,

8

D(A) = X? = {x €eX: Zaz|(x, o)x|? < oo}
k=1

and A is self-adjoint.

Proof. By Proposition 5.2, A is injective and hence invertible. Moreover, the inverse A™! is
continuous by equation (5.2).

We have D(A) C X? by equation (5.1). Now we show that D(A) 2 X?. For every x € X? we
have

V= Z ak(x, pr)x ek € X.
k=1
However,
y=Az= Z ai(z, pr)x Pk
k=1
for some z € D(A) by the surjectivity of A and Proposition 5.2. This implies x = z € D(A),
since {@k }ren is an orthonormal basis of X and a > 0 for all k € N.

Finally, we show that D(A) 2 D(A*) (the inclusion D(A) € D(A*) holds by the symmetry
of A). Let y € D(A¥) and set

n
Ppz = Z(z’ k)X Pk
k=1

foralln € Nand z € X. Then P,z € X? = D(A) foralln € Nand z € X and P,z — zasn — oo.
Moreover, P, is symmetric, because {¢ }ren is an orthonormal basis of X and AP, x = P,Ax
for all x € D(A) by Proposition 5.2. Now

(x, PnA*y)X = (Ppx, A*y)X = (APpx, J/)x
= (PpAx,y)x = (Ax, Ppy)x = (x, APny)x

for all x € D(A) by definition of the adjoint operator A*. As D(A) is dense in X, this implies

n

P,A"y = APpy = Z ak(y, 0k)x Pk
k=1
for all n € N, and consequently
A'y = lim PaAy = D @y 00Xk

k=1

This shows that y € X? = D(A), as

D a3, eox I = A4V < oo, o
k=1
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Corollary 5.4. Every densely defined, symmetric, surjective operator A in X that satisfies As-
sumptions 5.1 (iii) and (iv) is Laplace-like.

Proof. This follows immediatley from Propositions 5.2 and 5.3. O

Example 5.5. Let Q be a bounded, open subset of R with C* boundary dQ and let

d
0
A_;a—xj

denote the (weak) Laplace operator on H*(Q). We use Corollary 5.4 to show that A = —Ais a
Laplace-like operator in L*(Q) if its domain is chosen as D(A) := H*(Q) N H}(Q).

First of all, A is densely defined in L?(Q), since C°(Q), the space of smooth functions on ©
with compact support, is dense in L*(Q) and C°(Q) ¢ H*(Q) N Hy(Q). We show that, moreover,
A is surjective. Theorem 2.2.2.3 in [Grisvard 2011] states that for every f € L?(Q) there exists a
unique u € H?(Q) such that

-Au=f inQ,
yu=0 onodQ,
where y denotes the trace operator. Furthermore, for u € H'(Q) we have u € Hy(Q) if and only
if yu = 0 by Corollary 1.5.1.6 in [Grisvard 2011]. This yields the existence of a u € H*(Q) N Hy(Q)
with Au = f. Note that surjectivity also holds for any convex bounded open set Q c R, this

follows from [Grisvard 2011, Thm. 3.2.1.2].
A is symmetric, since

(—Au,v)2 = / —Auvdx = /(Vu, VU)ga dx
Q Q
= / —ulAvdx = (u, —Av)p2
)

for all u, v € H*(Q) N Hy(Q), where Vu = (ow. .., %)T for all u € H(Q).

6x1 ’

Next, we show that A satisfies Assumptions 5.1 (iii) and (iv). By Theorem 6.5.1 in [Evans 1998],
which holds for any bounded open set Q ¢ R?, each eigenvalue of —A is real, the spectrum of
—A is given by

% = {Ak}peyp

where each eigenvalue is repeated according to its multiplicity,
0<A <A <A3<...,

and
A > 0 ask — oo,

Moreover, there exists an orthonormal basis {¢x };"_, of L*(Q), where for all k € N, ¢4 € Hy(U)
is an eigenfunction corresponding to A:

—Aq)k = Akq)k in U,
P =0 on dU.
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5.1 Laplace-like Operators

Finally, Weyl’s asymptotic formula

e
Ak < 47r( Vol(Q)) kd

1
T(d/2 +1)

(see Theorem 8.16 and Remark 8.17 in [Roe 1998]) provides an estimate for the eigenvalues that
yields A = k%4 je. there exist C, > C_ > 0 such that

C_ké <A <Cokd forallk e N.

5.1.2 Functional Calculus

In order to define real powers of a Laplace-like operator A as well as exp(—tA), t > 0, we briefly
introduce the functional calculus for self-adjoint operators as described in [Engl, Hanke, and
Neubauer 1996, Section 2.2].

Proposition 5.6 ([Engl, Hanke, and Neubauer 1996, Prop. 2.14]). Let A be a self-adjoint operator
in a Hilbert space X. Then there exists a unique spectral family {E;},cr, called the spectral
decomposition of A, such that

D(A) = {x €X: / N2d||Ejx||? < oo}

and

Ax=/ ME;x forallx € D(A).

We have already seen that the spectral decomposition of A simplifies to

Au = Z ar(u, pr)xer  forallu € D(A).
k=1

So, the unique spectral family of A simply consists of the orthogonal projections E;, given by
Eyu = Z (u, pr)x o forallu € D(A).
keN

ak</1

Definition 5.7 ([Engl, Hanke, and Neubauer 1996, Def. 2.15]). Let A be a self-adjoint operator
in a Hilbert space X with spectral family {E, } )cr. Moreover, let M, denote the set of all real
functions measurable with respect to the measure d||E;x||* for all x € X. Then for all f € M,
the operator f(A) is defined by

fA)x = [00 f(AdE x  for all x € D(f(A)),

where

D(f(A) = {x €X: [)OJ’(/UZdIIEAxII2 < 00}-
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Note that in particular M, contains all piecewise continuous functions. We can now express
fractional powers of A with s € R as

ASu = Z op (u, pr)x @r  forallu € D(A%),
k=1

where

D(A%) = {u €X: iais |(u, (Pk)x|2 < oo}.
k=1

Proposition 5.8. Foreveryt > 0, exp(—tA) is a continuous linear operator on X.

Proof. For fixed t > 0 the real function exp(—t-) is continuous and hence in M. This allows us
to define exp(—At) in X by means of the functional calculus as

[Se]

exp(-At)u = > e (u, p)x ok
k=1

for all u € D(exp(—At)). Now D(exp(—At)) = X, because

s3] 2 > 2
26_2““ |(w. ) x| < Z | pi)x|” = llulli < o
p k=1

for all u € X. Moreover, exp(—At) is continuous, because

(o)

lexp(-Atully = > e |(u, gi)x | < Ilull
k=1

forall u € X. o
Lemma 5.9. Foreveryt > 0 and h > —t, R(exp(—tA)) C D(exp(—hA)).

Proof. Let u € R(exp(—tA)). Then there exists w € X with u = e"**w. Now u € D(exp(—hA)),
because

[ee) [ee)
e, gp)x [P = ) e 2w, o)k [* < Wil < oo, o
k=1 k=1

5.1.3 Hilbert Scales

Now we can define the Hilbert scale induced by a Laplace-like operator A as in [Engl, Hanke,
and Neubauer 1996, Section 8.4]. To this end, we note that A is an unbounded densely defined
self-adjoint strictly positive operator in X. We consider the set

M = ﬁ DAF).
k=0
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5.1 Laplace-like Operators

M is dense in X and it follows by spectral theory that A® is defined on M for all s € R and that

M=) D).

seR
In M, we introduce for all s € R the inner products and norms
(u,v) xs := (A%u, Agv)x,
lull = A%l

respectively, for all u,v € M. Now, H* is defined as the completion of M with respect to
the norm ||| vs and (H*)ser is called the Hilbert scale induced by A. For each s € R, H* by
definition is a Hilbert space. It is, however, by now only equipped with the norm

||[{un}n€N]XS

IHs = nlgrolo ”un”XS ’

for any Cauchy sequence {u,}, cy € M, where [u]ys denotes the equivalence class of u with
respect to the equivalence relation defined by

{untnen ~{Vntnen  © lim ||up —vnllxs =0
n—oo

for all Cauchy sequences {uy, }nen, {Un }nen in M. We will fix this later and show that at least
for positive s the *-norm coincides with the original X*-norm. The following proposition
summarises some key properties of Hilbert scales that we will use throughout the rest of this
chapter.

Proposition 5.10 ([Engl, Hanke, and Neubauer 1996, Prop. 2.16]). (i) ThespaceH" is densely
and continuously embedded in H® for all s < t.

(ii) The operatorA%, defined on M, has a unique extension toH" foralls, t € R. This extension,
f—s I=s
again denoted by Az , is an isomorphism from H' to H*. Moreover, A= is self-adjoint
and strictly positive in H* fort > s.

(iii) A'™S = A'A™S holds for all s, t € R, and in particular (AS)™! = A™S.

(iv) Foralls > 0, H* is isometrically isomorphic to D(A2) and H~S is isometrically isomorphic
to (H?®)*, the dual space of H*.

In the following, we will identify H* for s > 0 with the subspaces

(o8]

X® = D(A?) = {u €X: Zai |(u, (pk)x|2 < oo}
k=1

of X by assigning the equivalence class of the series

{Ea,ulnen = {Z(u, Pr)x <Pk}
k=1

neN
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

with limit u to any function u € D(A?). This way, we can extend the definition of the X*-norm
to D(A?) and it coincides with the H*-norm, since

2

2
H[{Eanu}neN]/\’S Hs = nlglgo| - hm ||A2E u||X
2 o0
= lim Za (w o)y ok| = i ||
X k=1
S i) =5 wrun
- Sufon) [ = 3 (4t
k=1 g X k=1
= ||z = i
= u X = Xs

for all u € D(A?).
Lemma 5.11. The set {a;s/zqok een = {A‘s/zq)k}keN is an orthonormal basis in X°.
Proof. {A™%/?¢i }ren is an orthonormal system in X, because

(A—%(,,k,A—%(,,j)Xs = (¢ ;) forallk,jeN

by definition of the X*-norm and the orthonormality of {¢y }ren. Moreover,

8

Z(“ @, pr)xsa, E§01< Z(Alu PI)x Pk = Z(” A290k)xak7
k=1 k=1

8

= > ( pO)x o = u

k=1
for all u € X*, because {@ }xen is an orthonormal basis for X. O
Proposition 5.12. For everys > 0 andt > 0, A™': X* — X°* is continuous.

Proof. By Proposition 5.10, A~* is an isomorphism from X* to X"’ and X**?’ is continuously
embedded in X°. So A™! is well-defined from X* to X* and continuous. |

Lemma 5.13. For f,s € R with0 <s < f — % the operator AS"P: X° — X is trace class.

Proof. By Proposition 5.12, A*™# is continuous from X* to X°. As {alzs/ zqok }ken 1s an orthonor-

mal basis of X* by Lemma 5.1 and a > C_k?¢ for all k € N by Assumption 5.1, the trace of
A>F computes as

- _ O .y -3 -3 _ = s—f -B = 2(s=p)
Tr A® _Z:(AS ak2¢k,ak2<pk)xs—2ak <C? Zk a .
k=1 k=1 k=1
This series converges because @ < —1by assumption. O
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5.2 Problem Setting

Lemma 5.14. Fory > 0 the function g: (0,00) — R, t > g(t) = t¥e ! attains its maximum at
t =y, increases monotonically for 0 < t < y and decreases monotonically fort > y. Moreover,

0<tVe! <y¥e? forallt>o0.
Fory < 0, in contrast, g decreases monotonically.

Proof. First of all, g(t) = tYe~* > 0 for all + > 0. Differentiating leads to
gty =yt et —tVe = (y —t)tV e’

forallt > 0. Ast¥'e™* > 0 for all t > 0, we have ¢’(t) = 0 if and only if t = y, ¢’(t) > 0 for
0<t<yandg'(t) <0fort>y.So,fory > 0, g attains its maximum at ¢t = y, which yields
the first estimate. For y < 0, it follows that g decreases monotonically. O

Lemma 5.15. Lets > 0. Then R(exp(—tA)) € X* forallt > 0 and there is a C = C(s) > 0, such
that ‘
llexp(—tA)u||xs < Ct™ 7 ||ullx forallt > 0.

Proof. First, we consider

3l A u gl = 170 (@t e (. pr)x

k=1 k=1

=20yt

By Lemma 5.14, the sequence (axt)°e is bounded from above by C := s%¢™%, so that

(e8]
D ale  u, pr)x | < £Cllull}, < oo,
k=1

This implies e~ *4u € X* and proves the estimate. O

5.2 Problem Setting

Let A be a Laplace-like operator in X and let (X?);er denote the Hilbert scale induced by A. We
consider the linear operator equation

y=elu+n. (5.3)

for the unknown u, the noise n and the data y. We assume that u € X and € X* for some s > 0.
More precisely, we make the following assumptions on the probability distributions of u and #:

o The prior u ~ N,24-- has a centred Gaussian distribution on X with r > 0 and r > %.

+ The noise n ~ L2 45-5 has a centred Laplacian distribution on X* with b > 0 and § > s+%

and is independent of the prior u. Here we define £ 4s-s using the orthonormal basis
{2 o} ken of X°.
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Now we want to determine the regular conditional distribution of u given y. Note that by the
choice of 7 and § and Lemma 5.13, both covariance operators are trace class.

The reason why we chose 7 to have the covariance operator b>A*~# rather than b*>A~ is that
we want the Laplacian distribution y of n on X* to satisfy

| o0t ppxun = A7 g
for all k, j € N, independent of s. This is achieved by choosing i := L, 4s-5, because

(u, pr)x = (A2u, A2 p)x = (1, A5 ) xs

forallu € X%, s > 0, and k € N, and consequently,

fx (1. 01)x (1, @1)x Ly as-p(dry) = /X (1, A7 @) oxs (0, A7 @) xs Lz g5 (d1y)
= (BPATP AT g, A0 xs = (AP, 0))x

by definition of the covariance operator.

5.3 Derivation from the Heat Equation

Now we go into the connection between the operator equation (5.3) and the heat equation.
More precisely, we will derive equation (5.3) from the following abstract Cauchy problem.
Let A be a Laplace-like operator in X. Given initial data u € X we want to find a solution v to

the initial value problem
dult) = —Au(t) fort > 0,
dt (5.4)

v(0) = u,

in the sense of a continuous function v: [0, 0) — X that is continuously differentiable for all
t > 0 and satisfies v(t) € D(A) for all t > 0.

Example 5.16. We obtain the classical heat equation on a bounded, open domain Q ¢ R?
with C* boundary by choosing A := —A to be the (weak) Laplace operator in X := L?(Q) and
D(A) == H*(Q) N H)(Q).

We will to show that v(t) := e~*4u is the unique solution to the initial value problem (5.4).

Proposition 5.17. The family T(t) := exp(—tA), t > 0, forms a strongly continuous semigroup of
bounded linear operators on X.

Proof. By Proposition 5.8, exp(—tA) is a continuous linear operator on X for every t > 0. The
semigroup properties can be shown using the spectral decomposition of exp(—At). We have

T(0) = exp(—A-0) =Idx

and
T(t +s) = exp(—A(t + s5)) = exp(—At) exp(—As) = T(t)T(s)
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5.3 Derivation from the Heat Equation

for all t,s > 0. It remains to show that

limT(t)x =x forall x € X.
=0

Let ¢ > 0. For every t > 0 we have

T(t)x—x=e —tA Z - 1 (x Or)X P
k=1

Now choose N € N, such that Z:’:Nﬂl(x, <pk)X|2 < 52—2 Next, choose t; > 0, such that
ooy < ———

- \/_lellx

Note that 1 — ™! < min{t, 1} for all t > 0. Consequently, for all ¢ € [0, ;] we have

(o]
Hx - e_tAx”; = Z (1- e_mk |(x, @) x|
=1

< ZK ox +—<s 0
e ||X

Proposition 5.18. (i) For everyu € X the function (0,00) — X, t > exp(—tA)u is differen-

tiable, and
—(t+ h)A)u — —tA
%im exp(=(t + h) ;u exp(~tA)u = —Aexp(—tA)u.
t+h>_0),0h¢0

(ii) For allu € D(A), it is, moreover, differentiable int = 0, and

—hAu —
lig SPCRAu -
h—0 h
h>0

Proof. We first show the second statement. Let u € D(A) and consider for fixed h > 0 the
difference

e_Ahu —u —akh
T - (_Au ( + (Xk) (u @k)X<Pk

8 ||M8

—akh
( ) o, Qi )X Pk -
k=1

For a given ¢ > 0 we choose N € N, such that

D, alwpxl <5
k=N+1

53



5 A Severely Ill-posed Linear Problem with Laplacian Noise

holds. By the defining property of the exponential function,

This allows us to choose ty > 0, such that for all h € (0,ty] and k € {1,...,N}

( e~akh _ 1)2 1 &
1- < —
—aih ||Au||)2( 2

is satisfied. Furthermore,

for x > 0. Consequently, we have
e Aty —y

P (—Au)

N ek —1\* 2 2
Z( ) o} |(u. gr)x|
k=

1 £2 N 9 9 2 2
< —— a; |(u, +—<¢
Tl 7 |2kl 00l + 3

k=1

X

for all h € (0, t].

Now we show the first statement. Let u € X and t > 0. Then v := e"*4u € X? = D(A) by
Lemma 5.15 and Proposition 5.10 and v € D(e™"4) for all h > —t by Lemma 5.9. We proceed
similarly as before. We have

~(t+h)A,, _ ,~tA ~hA
‘ L;l ¢ u—(—Ae_tAu)

= - (~4v)

i —(th _ 1

Z (1 - —) ar (v, Pr)x Pk
=1

forall h > —t, h # 0. For a given £ > 0 we choose N € N, such that 37 ., ail(u, o)x|? < %2
Then we choose hy € (0, t], such that

(1 e~ axkh —1)2 1 £
- 2
l|Av5, 2

holds for all h € [—hg, hy] \ {0} and k € {1, ..., N}. This yields

[} —Otkh 2
= Z( ) ot |, pi)x|?

2

2 : 5 2
< a; (v, — <€

for all h € [~ho, ho] \ {0}. O

o—hA
- (= Av)
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5.4 Posterior Distribution

Corollary 5.19. The family T(t) = exp(—tA), t > 0, is a differentiable semigroup and —A is its
infinitesimal generator.

Proposition 5.20. For everyu € X there is a unique solution v of the initial value problem (5.4)
given by v(t) = exp(—tA)u forallt > 0.

Proof. As —A is the infinitesimal generator of the differentiable semigroup T(t) = exp(—tA),
t > 0, by Corollary 5.19, Theorem 4.1.5 in [Pazy 1983] yields that (5.4) has a unique solution v
for every u € X and that it is given by v(t) = T(t)u. O

Now we assume that for given u € X only a measurement y of the solution v(t) = e~*u at
some fixed time ¢ > 0 is available and that, moreover, this measurement is perturbed by additive
noise € X°. This leads to the operator equation

y=ovt)+n=eu+n.
By Lemma 5.15, e “4u € X°, so that also y € X*. Without loss of generality we may now
assume that t = 1 by considering the initial value problem for the scaled operator A instead of
A. Clearly, if A is a Laplace-like operator, then so is tA. This way we arrive at equation (5.3).

5.4 Posterior Distribution

Now we determine the posterior distribution for the inverse problem described in Section 5.2.
We will show that introducing a prior and considering the problem from a Bayesian point of
view acts as a regularisation and resolves its initial ill-posedness. Subsequently, we will show
that the posterior distribution is also stable with regard to approximations of the log-likelihood.

5.4.1 Derivation

We want to use Theorem 1.3 with the noise distribution v = L. 4s-5 as a reference measure to
obtain the posterior distribution p¥ in terms of its density with respect to the prior distribution
po = Ny24--. To this end we need to show that all translates v,-a,, = L,-a, j24s- of the noise
distribution are absolutely continuous with respect to L 4s-5. Then the regular conditional
distribution of y, given u, is given by (1, V) + L,-a,, j24s-(V) as described in Section 1.4.

Proposition 5.21. For allu € X, the measures L,-a,, 2 4s-p and Ly 45— are equivalent and

d.Le—Au’ b2As—B

ALppny ) = exp(-0(.y)

for L2 4s-p-almost all y € X°, where

o0 o ~
(u,y) == V2 Z |, pr)x —e (ui;f/';)X| (v, or)x|
k=1 bock

forallu e X andy € X°.
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Proof. Theorem 3.10, applied with H = X*, a = e~4u and Q = b?AS~7, tells us that Lo-ny pras-p
and L2 45— are equivalent if and only if e u € bAT (X?). This is indeed the case forallu € X,

since A7 (X*) = XP by Proposition 5.10 and e™4u € X” for all u € X by Lemma 5.15. From
Theorem 3.10 we also obtain the density
-S

for L2 4s-p-almost all y € X*. Note that here the orthonormal basis ex = a, /zq)k, k €N, of X*
and the X*-inner product were used. From Proposition 5.10 and the self-adjointness of e~* we
obtain that for all u € X,

-3
2

1 B
—,(b ATy o) xs

d-Ee‘Au b2As—B = B-s _s
e Twr A T ) = -2 ‘b_lAT —e M), a, s
T, W eXp( V2 é(( (y—eu)a, " pr)x

(M‘”‘“‘—’bz*‘s’ﬁ(y) = exp (—\/Ei b1 (’(y — ey, qu)k)x| - |(y’Ag(Pk)X|))
P

dLbzAs—[)’
| or)x — (W e or)x| = (v, or)x|
=eXp(—‘/§Z| —ﬁ/Z |
k:1 bak

= exp(~®(u, y))
L2 os-p-almost surely. ]
Corollary 5.22. The regular conditional distribution of y given u is given by
V) > Loy poas (V).
Proof. This follows from Proposition 1.4. O

We put some basic properties of the function ® on record.

Proposition 5.23. The function ®: X X X°* — R defined by (5.5) is continuous and for every
y € X*, u v+ ®(u, y) is Lipschitz continuous with a Lipschitz constant independent of y.

Proof. We first show the Lipschitz continuity of ®(-, y) with Lipschitz constant

L:= %ﬁﬁe‘ﬁ(TrA_ﬁ)é

independent of y € X*. Here we use the notation xx = (x, ¢x)x for all k € N and x € X. For
u, v € X we estimate

)
|D(u, y) — O(ov, y)| < al |lyk — e " ue| — |y — e |

_g B -
oo e Flug — v

IA

& =S

o

D1 T

x
1l
—
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5.4 Posterior Distribution

using the triangle inequality. The sequence {af e~ % }rcn is bounded from above by ffeF by
Lemma 5.14 and the operator A is trace class by Lemma 5.13. We further estimate

1

B, y) = B, )| < Vgﬂﬁe—ﬁ (Z a,;ﬁ) (ka - vkﬁ)

k=1 k=1
2
= %ﬁﬁe—f’mﬂ)éuu —vllx = Lllu - vlix
using the Cauchy-Schwarz inequality.
Now we show the continuity in y. Let u € X and ¢ > 0. Here we estimate

V2o £ _ _
90, y) — B, 2) = = D iy — ¢ o] = Iyl = e = ¢ une] + [z
k=1
\/5 N s 0
< b ZZakz lvk — zk| + — Z 20 e “Fu|
k=1 k=N+1

forall y,z € X* and N € N. As the series 31,7, a;’ e”“* |uy| converges, we can choose N = N(u)
such that

Next, we choose

(%)
Il
[\
<| <
[\
—_—
1=
R
(RS
4
~————
|
N
N |

This way, we have
1 1
2 2
af_s) (Z ap|yk _Zk|2)
k=1 k=1
€
2

zZ

VZh, 8 2V2
7220!,3 |vk — 2|
k=1

IA
|
—_—
1=

< Sy - zllxs <
S — —Z s S
253’ X

for all y,z € X* with ||y — z||xs < 8, and consequently

&

|D(u, y) — P(u, 2)| < g +-—=¢.

[\

The continuity of ® now follows from the continuity in u and y and the triangle inequality. O
Corollary 5.24. The function (u, y) — exp(®(u, y)) is B(X) X B(X*)-measurable.
Proof. By Proposition 5.23, exp(®(u, ¥)) is continuous and hence B(X) X B(X*)-measurable. O

Moreover, u +— ®(u, y) is convex for every y € X*, but not strictly convex. The following
example shows that in our case u — ®(u, y) is not necessarily bounded from below.
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Example 5.25. We can construct y € X* and a sequence {u"},en € X such that &(u",y) — —oo

as follows. Set
n

Let m € N be large enough such that o > 1forall k > m. As f —s > 0, it follows that
CD n < - 2 < - —
Wh.y) = b,;“k kS bI;nk

for all n > m. However, — >} _ % — —co as n — oo and hence also ®(u",y) — —oo. As

|lu"||x — oo this example also shows that ®(:, y) is not coercive.

In contrast, the potential ® » resulting from the heat equation with Gaussian noise is bounded
from below in u for fixed y € X°. Replacing the noise distribution L 4s-p on X* by Nys-p in
this setting leads to the potential ®x: X X X* — R,

LI, 2 _a |2 B A B _4
CDN(u,y)=5”AZe u”X—(AZe 2y, A%e Zu)x

see Section 3.3 in [Dashti and Stuart 2017]. However, due to the quadratic term, the function
u — Dp(u,y) is not globally Lipschitz continuous for any fixed y € X*, but only Lipschitz
continuous on bounded sets.

Lemma 5.26. Let iy be a centred Gaussian meausure on X. Then for every C > 0, the function
u — exp(Cllullx) defined on X is pg-integrable.

Proof. By Fernique’s theorem [Bogachev 1998, Thm 2.8.5], there exists « > 0 such that the
integral /X exp(a||u||)2()y0(du) is finite. Set R := g Then the integral

2

/ exp (Cllullx) po(du) < / eXP(C—)ﬂo(du)+ / exp (@llull?) o(du)
X Br(0) X\Bgr(0)

o

is finite as well. m]

Proposition 5.27. The function u — exp(—®(u, y)) is N,z 4-- -integrable for all y € X*® and there
exists a constant Cz > 0 such that

/ exp(—®(u, y))Ny2g-(du) > Cz  forally € X°.
X
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5.4 Posterior Distribution

Proof. We first show the integrability. Let y € X* be arbitrary. We use the Lipschitz continuity
of @(+, y), which holds by Proposition 5.23, to estimate

/ exp(~D(u, y))Ny2 4+ (du) < exp(—(0, ) / exp(Lilullx )Ny 4« (du).
X X

Now ®(0, y) = 0 for all y € X* by definition of ® and the integral on the right hand side is finite
by Lemma 5.26.

Now we address the lower bound. By the Lipschitz continuity of ® in u, the estimate

/ exp(=(u, y))Ny2 4 (du) > / exp(—Lullx )Ny - (du)
X X

> / e EN2g-o(du) = e I N2 4 (B1(0)) =: Cy
By(0)

holds for all y € X*. By Theorem 3.6.1 in [Bogachev 1998], the topological support of the
Gaussian measure N,z 4 - is given by the closure of its Cameron-Martin space R(A™7/?) = X7.
Since X” is dense in X the topological support is the whole space X. As a consequence, all
balls in X have positive measure under N,z 4-r, which in turn implies that the constant C is
positive. O

With this knowledge we can apply Bayes’ formula.

Theorem 5.28. A regular conditional distribution (y, B) — p”(B) of u given y exists, the posterior
distribution p¥ is absolutely continuous with respect to the prior distribution N,z2-- for every
y € X? and has the density

dy
F =

1
AN 70 exp(—®(u, y)) N,2---almost surely, (5.6)

where

O(u, y) :=

|0 0)x — e (u, or)x| — 1(: or)x|
%)
k=1 a

forallu € X andy € X° and
Z(y) := / exp(—®(u, y))N,24--(du) forally € X°.
X

Proof. By Proposition 5.21 the measure P, := L,-a,, ;2 4s-p is absolutely continuous with respect
to v := Lyoys-p for all u € X with the density y — p,(y) := exp(—®(u, y)). The function
(u, y) — pu(y) is measurable by Corollary 5.24 and Z(y) > 0 for all y € X* by Proposition 5.27.
Therefore we may apply Theorem 1.3, which yields the proposition. O
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

5.4.2 Stability

Now we show that Bayesian inference acts as a regularisation for the ill-posed operator equation
y = e~“u and stabilises the problem in the sense that small changes in the data y lead to small
changes in the posterior distribution y?. This means that introducing a prior and considering
the problem from a Bayesian point of view turns it into a well-posed problem.

We use the Hellinger distance as a metric to describe the difference between two probability
measures p and p’ on a Hilbert space X. Let v be a reference measure, such that both p and p’
are absolutely continuous with respect to v. Then the Hellinger distance is defined as

2 \3
n_|[1 [dp  [dw
duen(p, ') = 2/x( " dv) dv| .

Lemma 5.29. Let {y"},en be a sequence in X* that converges towards y* € X°. Then both

/X lexp(~(u, y7)) — exp(~(uts )| Ny g-e () — 0

and
2

erA—T(du) -0

exp (—%Cb(u, y")) — exp (—%Cb(u, yT))

It
asn — oo,

Proof. We define f,(u) = exp(-=®(u, y")), f(u) = exp(~®(u,y")) and g(u) = exp(L||ullx)
forallu € X and n € N, where L > 0 denotes the joint Lipschitz constant of {®(-, y)}, cxs.
For the sake of brevity we moreover set pg := N,24-r. For M > 0, the restriction of the
exponential function to the inverval [-M, M] is Lipschitz continuous with Lipschitz constant
exp(M). Together with Proposition 5.23 this yields

|fu(w) = f@)| = exp(—®(u, y")) — exp(—D(u, y"))|
< exp (Llullx) |@(u, y") — (u, y")|

forallu € X.So f,, — f almost surely asn — oo by Proposition 5.23, which implies convergence
in probability. Furthermore, { f, },en is dominated by g, because, by Proposition 5.23,

| fa(W)] = exp (=®(u, ")) < exp (Lllullx) = g(u)

holds for all u € X and n € N. This also ensures that f, € L'(X, yo) foralln € N, as g € L}(X, po)
by Lemma 5.26. Now Lebesgue’s dominated convergence theorem [Klenke 2014, Cor. 6.26]
yields that f,, — f in L}(X, yo) (convergence in mean), i.e.,

/ @) = £ ()] ro(dus) — 0,
X

1 1
and that {f,}nen = {|f,Z|?}nen is uniformly integrable. As f;2 € L2(X, yo) for all n € N and
1 1
fi—=f 2 almost surely, Theorem 7.3 in [Klenke 2014] yields f,; — f 2 inL3(X, o) (convergence
in mean square), i.e.
2
[ 1@t = £k ot = o o
X
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5.4 Posterior Distribution

Theorem 5.30. Let {y"},en be a sequence in X° that converges towards y' € X°. Then the
n T
associated posterior measures p1¥ converge towards ¥ with respect to the Hellinger distance, i.e.,

n T
den(p” . 1) — 0.
Proof. Again, we set y1g := Ny24--. As both p¥" < jy and ,uyT <, we can express the

(squared) Hellinger distance as

n T y yT
dHeIl(,uy ,ﬂy )2 = du dll dpo
d,uo

1
=3 exp (~D(u, y"))? — ;
/ (Z(y”)2 Z(y"):
Now we abbreviate f;,(u) = exp(—=®(u, y")), f(u) = exp(-~®(u, y")) as before and set
._ ny _ — Ty —
Zo=20" = [ fdwo. 2220 = [ fape

We use (a + b)? < 2a? + 2b? for a, b € R to obtain

1 2
exp (—‘D(u, y%)) z) pio(du)

1 1\2 2
1 2 ff 1 1 1 1 1 1 1
s\ 5] 73 —1(f,f—f2)—(—1+—1 fz)
Zy 2 z; z; 2
1 z 1 1 ’
< (f-f1) +|=+ =] £
Zn Z,g 72

which results in

dHeu(,Uyn,llyT)z = Zin_/ (fn(u)2 - f(u)? ) po(du)
/ Flupo(du) = I + I,
X

1
— -

+ i
A

n

Now Lemma 5.29 implies that Z,, — Z = /X( fn — f)duo — 0 and consequently,

O

Moreover, Lemma 5.29 shows that ; — 0 as well.

By interpreting Theorem 5.30 appropriately, we can conclude that approximating the log-
likelihood @ also results in small changes in the posterior distribution . For every N € N let
Py denote the orthogonal projection onto the subspace span{¢y, ..., ¢n} C X*, defined by

N N
Pyy = Z(y, Pik)x Pk = Z (y, ,ftpk)
k=1

s

a, ¢ forally e X°.

k=1
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

We consider finite approximations ®N of the log-likelihood, defined by

)

“l%

N
OV (u,y) = Du, Pyy) = D (16 or)x = e (w, pr)x| = 1 p)x])
k=1

forall N € N,u € X and y € X°. For every y € X° the sequence {y"}nen, defined by
yN = Pyy for all N € N, converges towards y in X*. Therefore Theorem 5.30 tells us that
dyen(p” A u¥) — 0as N — oo. We can, however, interpret " as the posterior distribution pv
resulting from an approximation of ® instead of an approximation of y, since

L exp(~@(u. yN))
dNpear [ exp(=@(i, yN)) Ny 4-r (did)
_ exp(—®N (u, ) _ duN
S exp(=N (@ y))Nyoa-r (di))  dNpea-s

(u)

N2 4~ -almost surely. This tells us that Bayesian inference is stable with respect to such changes
in the model.

We can also use the Hellinger distance to make statements about the closeness of expecta-
tions. For any function f € L*(X, p¥) N L3(X, ), a small Hellinger distance implies that the
expectations of f under p¥ and p? are close.

Lemma 5.31. Forall f € L*(X, p?) N L3(X, p*) and y, z € X* we have

[ flu) — B )] < 2V2 (B [F @I + B 1f @) disen (07 7).

Proof. By means of the Cauchy-Schwarz inequality and (a + b)?* < 2a* + 2b?, which holds for
all a, b € R, we compute
z dpy  dp?
[E” fw) - B f(w)] = ‘ [orawr= [ paw|=|[ 1 (L o )dv‘
X X x \dv dv
duy \/dyz dpy \/d/ﬂ
/Xf( dv " dv dv dv dv
e T\ 2
< Ve [ 1r¥ (\/di + \/i) dv | dien (7. %)
x v dv

< 22 (B |f @ + B |f@F) duen (27, ) o

5.5 Consistency of the Maximum A Posteriori Estimator

Here we determine the unique mode of the posterior distribution, use it in Subsection 5.5.1
to define an estimator for the posterior, the MAP estimator, and consider its consistency in
a frequentist setting in Subsections 5.5.2 to 5.5.6. In Subsection 5.5.3, we establish an a priori
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5.5 Consistency of the Maximum A Posteriori Estimator

parameter choice strategy for which the MAP estimator is asymptotically unbiased, i.e., under
which its expectation converges towards a true solution, and, in Subsection 5.5.5, a convergence
rate for the bias in case that a source condition is satisfied. Subsequently, we prove a convergence
rate for the mean squared error under a source condition and compare it with the optimal rate
in case of Gaussian noise in Subsection 5.5.6.

5.5.1 Derivation and Basic Properties

We apply the results from Chapter 4 to the posterior measure p” derived in Section 5.4. We
determine the Onsager—Machlup functional of p¥ and obtain the MAP estimator dyap by
minimising it.

The Cameron—Martin space of the Gaussian measure N,z 4-- is given by %A_T/ %(X), equipped
with the norm 2|JA=7/2.||x. Using Proposition 5.10, we find that 2A™7/2(X) = X".

Theorem 5.32. For everyy € X° the functional I” : X — R := R U {co}, defined by
1
I (u) = d(u,y) + ﬁHquw (5.7)

V2o 4 ) L&
= Z al (I(ys er)x — e (u, pr)x| = (v, @i )x|) + >3 Z of ||
k=1 k=1

forallu € X* and IV (u) = oo foru € X \ X7 is the Onsager—Machlup functional of p” .

Proof. Let y € X*. By Theorem 5.28, the density of the posterior distribution p? w.r.t. the prior
distribution N,24-- is given by (5.6). ® is Lipschitz continuous in u by Proposition 5.23, so
that Assumption 4.3 is satisfied by Lemma 4.9. Consequently, u — ®(u, y) + z_iz ||u||§(, is the

Onsager—Machlup functional of ¥ by Theorem 4.4. O

Corollary 5.33. Let y € X°. Then the functional I”, defined by (5.7), has a minimiser i € X*
and every minimiser of I is a MAP estimate. Conversely, every MAP estimate minimises I”.

Proof. By Theorem 5.28, the density of ¥ w.r.t. N2 -+ is given by (5.6). Now Corollary 4.16 tells
us that the minimisers of I are precisely the MAP estimates for p¥ as @ is Lipschitz continuous
in u by Proposition 5.23. O

Corollary 5.33 tells us in particular that every MAP estimate lies in X7. We express the
minimiser explicitly and show that it is unique.

Lemma 5.34. Lety € X° and let i = u(y) € X* be a minimiser of IY. Then @ = Y.;"_, ix .,

where ,

2
il = max {_%Rk, min {ea"(y, KX %Rk}}
and 5
Ry := \/Eak?_re_“k

for all k € N. In particular, the minimiser ti of I is unique.
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Proof. For all k € N and uy. € R, we define

1 V2 £
fr(u) = z—rzw,ﬁlukl2 + Ta,f (le” " ur = (v, ei)x| = (v er)x|) -

This way, IV (u) = 27, fi((4, ox)x). As a minimiser of I7, @ satisfies

0 < I(@+tor) — (@) = fi((@ or)x +t) = firl(@ or)x)

for all t € R and k € N. Hence @, := (i, ¢x)x minimises f; for every k € N.
Consider an arbitrary, fixed k € N. The function f; is continuous on R and continuously
differentiable on R \ {e**(y, px)x } with

—ay

a, e

fl(uk) _ lfuk < eak(y’ (pk)X’
k =

—ay

S S
LRSS NILS

~ ~
R

e if ug > e (v, or)x-

Set
2

r r’ = Blr _
Sk = ERk = 3\/50(,( e %k,
In case e (y, px)x > Sk, U = S is the unique minimiser of fi, because f;(Sx) = 0,

fk’(uk) <0 for uy € (—0, Sy), and
filur) >0 for uy. € (Sk, ) \ {e“*(y, pr)}.

In case e (y, px)x < =Sk, #x = =Sk is the unique minimiser of fi, because f/(-Sk) = 0,

fk,(uk) <0 for uy € (=00, =Sk) \ {e**(y, i)}, and
fi(ug) >0 for ug € (=Sg, ).

Finally, in case e®*(y, px) € [—Sk, Sk |,

filu) <0 if up < €™ (y, pr)x, and
filu) >0 if ug > e (y, r)x,
so that the unique minimiser of f; is given by @ = e**(y, i) x. O

By Corollary 5.33 and Lemma 5.34, IV has a unique minimiser @ = u(y) for every y € X?,
which at the same time is a MAP estimate for p¥. With this knowledge, we can define a unique
MAP estimator.

Definition 5.35. We define the maximum a posteriori (MAP) estimator ipap: X° — X by
assigning to every y € X the respective MAP estimate dyap(y) := @(y) for p?.

Equivalently, we can express éap as

1
imap(y) = argmin [V (u) = arg min {CD(u, y)+ FHHH/Z\’T}
r

ueXr® ueXr®
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5.5 Consistency of the Maximum A Posteriori Estimator

for all y € X°®. This means that the MAP estimator can be viewed as Tikhonov-Phillips
regularisation with disrepancy term ®(u, y) and penalty term # ||u||§(5
We can formally interpret Lemma 5.34 by reformulating the minimiser @ of I as

a(y) = eAPﬁQ(y) forall y € X%,
b
where Ps denotes the metric projection onto S € X* characterised by
I1Ps(y) = yllxs = inflz - yllxs,
zeS
and Q C X? is the convex closed set
Q:={yeX°:(y,01)x < e *Ry forall k € N}.

So the MAP estimator acts on the data y by projecting it onto a hyperrectangle and then applying
the inverse of the forward operator e™.
Next, we show that diyap is continuous, so that in particular a finite dimensional approxima-

tion of the data leads to a close MAP estimate.

Lemma 5.36. The series

(o] (o)

2 _ B2t 20y
S-Sl
k=1 k=1

converges.

Proof. By Lemma 5.14, af_ZTe_“k < (B - 2r)P27e?"F =: C, 5. We define the monotonically
2

decreasing dominating function x +— e¢"“-*¢ on R and use it to estimate

00 00 2
e % < Z e Gk < / e dk
k=1 0

o0 _d —dd_(d
:/ etcT? Sl gr =2 oy (—) = Cy,
0 2 2 \2

where we substituted t = C_x?/¢. We conclude the proof by combining these estimates to

(o)

e

k=1

Z Zaf—ZTe—Zak -9 Z (a][:—Zre—ak) e % < 2C;, pCq < 0. 0O
k=1 k=1

Theorem 5.37. The MAP estimator tyap: X° — X according to Definition 5.35 is continuous.

Proof. Let ¢ > 0. By Lemma 5.34, we have

R r?  o-s -5 r?
(uMAP(y)’ (Pk)X = max {_?Rk’ min {ak ’ eak(y’ ak ’ q’k)XS, ?Rk}}

for all k € N, where R, = \/Eaf / 27T o= We make the fundamental estimate

-3
2

0@ o) xs = (z, 0. @i ) xs

-3
2

r2
, Z—Rk}

|(@mar(y), ox)x — (Gmar(2), ¢r)x | < min {a,zze“k 5
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

for all y,z € X° and k € N, which leads to

linap(y) — ivap(@k = D I(iniap(y) = iviap(2), @) x |
k=1

N
—-S 20
< Z a’e
k=1

_s _s 2 > r2
o P or)xs — (2,0, or)xs| + Z ZERi-
k=N+1

forall N € N.
As Y, Ri < 00 by Lemma 5.36, we can choose N € N large enough, such that

—s/2 . -s/2 .
Next, we set M := maxy=;,__ N aks/ e“ and choose § := 3%;. Since {aks/ Ok tken 1S an or-

thonormal basis of X* by Lemma 5.11, we arrive at

82 & 3

2 4 2

oo
oo

lamar(y) — dvar(2)l5 < MP[ly — 2|55 + <e.

forall y,z € X* with ||y — z||xs < 4. O

Corollary 5.38. Lety € X* and set yN := Zszl(y, ¢r)x @k for all N € N. Then

anar(YN) = dvap(y) as N — oo.

Proof. We verify that yN — y in X*. This is indeed the case, because

-3
2

N N
YN =D 0ok = ) (et or)xsa ok
k=1 k=1

and {a;s/zgok}keN is an orthonormal basis of X* by Lemma 5.11. O

5.5.2 Frequentist Setting

Although we derived the MAP estimator from the Bayesian setting, i.e., from the posterior
distribution p”, we will consider its consistency in a frequentist setting. Instead of a prior
distribution we now assume that there is a deterministic true solution u* € X and only the noise
1 is stochastic with the same distribution as before. The data y = e “u" + 7 is then a Laplacian
random variable with distribution

y~ ‘Le"“u*, b2AS—P

on X°.
We will study the MAP estimator @yap when it is applied to data with this distribution. In
this setting, @ivap(y) itself is a random variable. In particular, we want to show that dyap(y)
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5.5 Consistency of the Maximum A Posteriori Estimator

converges towards the true solution u' in some sense as b, and with it the variance of the noise,
tends to zero.

For every y € X° the MAP estimate yap(y) is given as the minimiser of the functional
(u) = ®(u, y) + # ||u||f\,, by Corollary 5.33. We may, however, minimise a scaled and shifted
version of I” instead, since multiplying a functional by a positive number and adding a constant
does not change its minimisers. We can consider ®(u, y) as a discrepancy term and by multiplying
I” by b we obtain a functional whose discrepancy term is independent of b. Additionally, we
add a constant to bI”, chosen in such a way that the discrepancy term is equal to zero for u = u’
and y = e~4u". This leads to the new objective functional J7: X — R,

JY(u) == bI? (u) — b®(u', e u’)

b
= b(u,y) ~ b0’ ¢ ul) + lull}.
r

Again, J¥ decomposes into a series,

> B
J@) =2 af (10: r)x = e or)x| = (0, pr)x| + e (', pi)x)
k=1

b o0

2
+2r2 E o lugl”.
k=1

Now we set

b
Wil y) = V2a¢ (10 00x = € @ pi)x] = |0 x|+ e (', o) )

and ¥(u,y) := X7 Yi(u,y) forallu € X, y € X* and k € N. This way,

b
JV(w) =¥(u,y) + ﬁllullin

and the new discrepancy term ¥(u, y) does not depend on b. Moreover, ¥(u", -) is nonnegative
and ¥(u', e 4u’) = 0.

The functional J¥ can, up to a constant, be interpreted as Onsager—Machlup functional of the
posterior distribution resulting from unscaled Laplacian noise 7 ~ £ 4-5 in combination with a

scaled Gaussian prior it ~ N2 and ¥ (4, y) as the negative log-likelihood of the resulting

-7
5 A

data y given u.

5.5.3 Asymptotic Unbiasedness

First, we examine the convergence of the expectation E [éyap(y)] of the MAP estimator towards
the true solution u™ as b — 0. To this end, we show that the expectation of the discrepancy
term W(u', y) converges to 0 and prove an inequality for the expectations of ¥(iiyap(y), e 4u’)
and ¥(iivap(y), ¥). In a first step, we compute the mean and the variance of ¥(u', y).
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Lemma 5.39. Letu’ € X,b > 0 and y ~ Lo-ayt p2as-p. Then

E[¥@’,y)] =5 i (1 — exp (—%k))
k=1
and -
_ % Gk (o _ck)\?
Var(‘I’(u‘L,y))—bsz:;(4(1 e~ b € b) (1 e b))’
where p
Ck = \/Eage_ak |(u?,(pk)x| forallk € N.

)

Proof. Let ey := a, / Z(pk, k € N, denote the orthonormal basis of X* from Lemma 5.11. First, we
note that due to the independence of the components (y, ex)xs of y, the summands ¥ (u, y),
which can be written as

f-s
¥e(w',y) = V2a, 2 (|(y, er) xs — (el e)xs| = 13, ) xs | + [(e7u’, ) s

are independent, too. This allow us to write

Z \Pk(uT’ y)
k=1

By construction of the Laplacian measure, each component (y, ex)xs = px o y is distributed
according to

E [‘I’(u*,y)] =E

= Y E[%@’y)].
k=1

- -1
L(e’AuT,ek),\/S,bz(xziﬁ - LeiAuT’bzAsiﬁ opk ’
the pushforward of £,-4,+ j24s-p under the projection pr = (-, ex) xs. We set
a:=( U e )xs, A= bzaz_ﬁ

and substitute x = (y, ex) xs in order to compute
" 2
E[¥@',y)| = . b ;l (| ex) xs = al = |(vs ex) s

2
- /Rb\/;ﬂx —a| = |x| + |a]) Lg,(dx)

By substituting a by —a and x by —x in case that a < 0, we obtain

+al) Le-ayr peas-s(dy)

E [¥ (', y)] =/Rb\/§(|x—|all—IXI+|a|)£|a|,A(dX)

0 2 o
:[wb\/;2|a|£|a|,a(dx)+/|a| 0Ljq|,2(dx)
lal 2
+/O b\/;Z(IaI—X)qu(dx)-
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The first integral computes as

0 0
/b\/§2|a|ie—‘/7<“|—ﬂdx=b\/§|a|/ \/Ee_ﬁ““l_x)dx
o NN AN
_ b2 10l [~ VE a0
syl
2
= b\/;lal e—\/%lal - 0.

The last integral computes as

2 [l 2 -V4(lal-x)
b\/;/o (la] — x) 7€ x dx
= o2 [(lal = 2y e-VEal-0]"! _ \/E - VEal0)
_b\/;[(|a| x)e ]0 b /1'/0 (-De dx

—0- b\/glal eVl 4 p [ VRlal-0)] !
A 0
_ _b\ﬁ aleVE 11— V1)
A
We notice that

2 1 bs
\/;lal = E\@xkz

Summing up and resubstituting finally results in

1 B
—-A_ T ) }__\/_ 2~
e u',e = 2a e
( Klxsl = b k

E [‘Pk(uf,y)] =b (1 - e_%k) .
Now we turn towards

E (%3] = [ 55 (= lall = Il + o) Lia, (@)

0 2 |a| 2
= / b254|a|2£|a|,1(dx)+/ bzz4 (x - |a|)2£|a|,g(dx).
- 0

Here the first integral computes as
0

0
/ p28 a2 eV a0 gy = 28 12 [ Lo VE a0
. A 2z

= bz% lal? e_‘/%al,

—00
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and the second one as

lal 8 1 7
b2 (x — |a])? ——e Vi(lal-2) gy
f e

|a| |a| 8
- / bzi (x - |a|)e_\/§(|“|_x)dx
0

la|
0

0

4 2
= _b2_ |a|2 e—\/;|a| _ 4b2\/j [(x _ |a|)e—\/§(|a|—x)]
A A
lal
N / 4b2\/§e—\/?<|a|—x>dx
0 A
= b2 g2 VElal - 4172\/g la| e~ VElal 4 4p? (1 - e—x/%lcu) _
A A
Summing up and resubstituting yields
+ : 2
E [\Ilk(ul’y)] = 4bz (1 - e_\/%l“l — \/;|a| e_\/zlal)

= 4b* (1 et - %ke_%k) .

With this, we can compute
2
Var (W', y)) = E [%e(u’, y7] - B [#ew’, )]
= 4b° (l - e_ch - %ke_%k) - b? (1 - e_CTk)2

Because the components (y, ex) xs of y are independent, we can write

iwu*,y)) = 37 Var (et )
k=1 k=1
-3 [af-eF - B t) - (1)),

k=1

Var (‘If(uT, y)) = Var

Corollary 5.40. Under the assumptions of Lemma 5.39, we have
E [‘Ifk(uT,y)] < min{b,cr} forallk €N,
where ¢ = \/Eaf/ze_“k|(uT, Or)x|-
Proof. In the proof of Lemma 5.39 we saw that
E [%e(u’,y)] = b1 —e 7).
Now on the one hand, the expected value of each ¥, (u', y) complies with the estimate

E [‘Pk(uf,y)] <b,
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5.5 Consistency of the Maximum A Posteriori Estimator

since 1 — e k/? < 1for all b > 0. On the other hand, the estimate 1 — e < x for x > 0 yields
E [‘I’k(uf,y)] < b%c = Ck. O
Next, we show that the expectation of ¥(u', y) converges in the order of § if b tends to 0 in
the order of §'*¢ for some ¢ > 0.

Lemma 5.41. Letu' € X with ||lu'llx < p,b> 0,y ~ L-ay: yo4s-5 and § > 0. For every e > 0
there is a constant C, = C.(¢, p,d, p) > 0 such that

b < C, min {1, 51”}
implies
E [‘I’(uT,y)] <.

Proof. Let ¢ > 0. The idea is to use Lemma 5.39, split up the expected value

[E[‘I’(uT,y)] Sib(l—e_clf)+ i b(l—e_%k) < Nb+ i Ck (5.8)

k=1 k=N+1 k=N+1

for some N € N and estimate each summand either by b or by cx. Now we show that we
can let 3);°_ /., cx become arbitrary small by choosing N large enough. We estimate using the
Cauchy-Schwarz inequality and Assumption 5.1 (iv) that

1 1
o) [ ﬁ o) 2 (o8} 2
Z k= Z \/E(xkz ek !(uT, (Pk)Xl S( Z 20{56‘2“") ( Z !(uT, (pk)xlz)
k=N+1 k=N+1 k=N+1 k=N+1
1
) 2
< ( > chkife-mi) 'l
k=N+1

1
) B 2\2
< ( > aclcy” (2C_k%) e‘ZC-""’) p
k=N+1
For N large enough we have 2C_k*¢ > 1for k > N + 1, so that
%
= = (81 Z
I ( > 20 (2c_y7F (zc_k%) e‘zc-"d) ps
k=N+1 k=N+1

xM+B

where [f] := min{B € Z : B > f}. The exponential function satisfies the estimate e* > OB
for all x € R and M, B € N. Hence, xBe™ < (M + B)!x™™ and consequently,

D, ees| ) 2ct (zc_rﬂ(rm+M>!(zc_)-Mk-2?f) p
k=N+1 k=N+1
=(2CE (2C_)" P M (18] + M) i kM) p
k=N+1
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for all M € N and N large enough. Since k +— k~'d s monotonically decreasing, we can

estimate the remaining series by an integral,
© 0
k7 < / T N
N d

which leads to
1
)) N9 =y pN-CD),

[

5 s

k=N+1

Now we choose M > d (% + %) to ensure
M
d

=3

(465 (2C0)"F+M) (141 + M) (

s
DOl

<N<2z B
- o)

1 1
1+
M_1
a7z =C,0

Finally, we want to bound the first term Nb in (5.8) by % as well. By the choice of N and M, we
1

i>é EC
aN = 4 \5 MP

have
TM_1 1 -
) ‘7 =Z(2CMP) it

1

where C, := ;11 (ZCMp)_%'% 6 > 1, then we use b < C; to get

1+
Nb < NC, < NC.6

If, on the other hand, § € (0,1], we use b < C.5'*¢ to get
14— S
Nb < NC,8"* < NC,§ @t < 5

Finally, summing up yields
y)| < Nb+ Z k<
~Auh).

We use the explicit representation of the MAP estimator from Lemma 5.34 to study the

expected values of ¥(inap(y), v) and ¥ (dpmap(y), e

Lemma 5.42. Letu’ € X,b > 0 andy ~ L4y p2as-p- Then
0 < E [¥(imar(y), e *uh)] < E[¥(dmar(y), y)] .
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5.5 Consistency of the Maximum A Posteriori Estimator

Proof. Set @ := dpap(y). As in the proof of Lemma 5.39, we write

Z ¥i(@, y)

and E[¥(@, e 4u’)] = e B[ (a, e~4u")], respectively, and show that 0 < E[Wi(a, e 4u")] <
E [Pr(a@, y)] for all k € N. For a fixed k € N we set

(o)

Z [¥(@ y)]

k=

E[¥(a )] =

(AT 12 s
a:= (e u',er)xs, )L.—bak R

s/2

where e; := a, "' “¢k. A change of variables results in

E[¥x(a, y)] = /X b\/g (|(y, ex)xs — (674, ex) xs
_ /R b\/g ()x ol e (g, (pk)X‘ x| +lal) La2(dv) (5.9)

By Lemma 5.34, we have

~ ||+ lal) Loy s (@)

s s 2 B, 2 p_,
al e “(, pp)x = a; e~ % max {—\/E%akz e %% min {e“k(y, Or)X> \/E%akz e_‘""}}
= max {_R’ min {()” ek),\’S, R}} >

where R := \/_ r’ S/ 2P o—2a . Inserting this into (5.9) and splitting up the integral yields

-R
E[¥(a, y)] = \/7(|x (=R)| = |x] + lal) Lq,2(dx)

+ [R b\/;(o = |x| + |a]) La,1(dx)

+ / b\/g(lx —R| = |x| + |a]) Lg,2(dx)

R
0 R
:b\/§|a|+[Rb\/§x£a,a(dx)+/o b\/g(_x)La,/l(dx)
0 2 -R 2
+/R b\/;(—R)La,A(dX)Jr[w b\/;(_R)-Ea,A(dx)

—-R o) 00 o
/ Loy + / Loy = / AL jap s + / 4L
—0 R R R

0 R R R
/_ xLoad) s /0 (x) Lax(dx) = /0 (=) L_jap2(dx) + /0 (=) L1a1.2(dx)

We use

and
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

to arrive at

2 R J2 K[z
E[¥(a,y)] = b z|a|—/ b Ix1:_|a|,a(dJc)—/ by 7% L1l 1(dx)
0 0
_/ b\/jRL—IaI,A(dX)—/ b\/leimu(dx)
R A R A
2
::b\/;|a|+11+12+13+14-

Here we must distinguish between |a] < R and |a|] > R. We begin with |a| < R, where the
second integral is split up into

Ja
/ \/7,(_6 VE(lal-x) gy / \/7x—e_\/_(x a4
a

L [ e VEal-0]" /' L ~VEdlaly
= —b— [xe Vi b [ b VElalgy
\/ﬁ [ ]0 0 V22

R
o VEa-lap]® / L VEx-la)
xe + b e V17 dx
\/_[ ]lal lal V27

1
=- —(|a| 0— Re" VA&l 4 |g))

la|
+b

R
bﬁ VE(R-lal) _ \/7|a|

e

G"

_e -VZ(al-x)

__e V- Ial>}

lal

The fourth integral computes as

o 2 1 P R P 00
L= b\/jR—e_\/:(’H“')dx _ _p B[ VEG-la)
! /R RNy N [ ]R

= _p R VER-la),
V22

Similarly, the third integral equates to
«© 2 1 2 R 2
_ b\/jR—e_‘/:(“'“')dx __p R NERela),
/R A N2 V21
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5.5 Consistency of the Maximum A Posteriori Estimator

Finally,

/ \/7x_e—\/_<x+|a|>dx

R
_ L _xe—\/?<x+|a|>]R+/ bt VECrtlal gy
0 0

V2a Ve
R
_ b\/i_e—\/?(mlal) b _le—«/§<x+|a|>]
24 0
_p B VEwsla) _ P \/_<R+|a|>+ ~Zlal
V2

For |a| < R, summing up yields
E[¥k (i1, y)] = b (1_e VEr- |a|>) (1_e \/‘<R+|a|>)
2

The case |a| > R remains. Here, the fourth integral is split up into

la| \/7 oo 2 1 -
R—e Vilal =) 4y — / b\/jR—e‘/:(xlal)dx
/ ol VA V21

_ R [e—x/}<|a|—x>] &, R [_e—x/%x—mn] ®

V221 R 22 la|
R ;
= p— (1-eVEUa-R g 4 g

2 R 2
_ _b\/jR B VE(al-R)
A V22

The second integral computes as

/ \/7x_e—\/_<|a| ) dx

R R
_ L [xe—x/%w—x)] +f b o~V (al ) g
0 0

V22 V2l
R
_ p R VEaR le—\/?<|a|—x>}
V22 2 0
_ _bvl_e—«/?um—m bV al-r) _ b DoVl
21 2

I, and I; remain unchanged. So for |a| > R, summing up results in

E[ ¥ (@, )] = b\/7(|a| R)+ e ViUal-R) _ - \/_(|a|+R))
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Next, we consider

E[¥(a, e *u")] = / Voo 2| Aul, ex) s — (€7 en) x| Loayt prass(dy)
Xs

—R 2 R 2
=/ b\/j|a+R|-£a,/1(dx)+/ b\/jla—xlia,a(dX)
—eo A -R A

& 2
. f b\ﬁ la— Rl La2(dx)
R A
Here, we use

—-R 00 00 o)
/ R+ ald Lo, + / IR - aldLa s = / R+ lall dL_jap 1 + / IR — lall dLyap 1
— R R R

o0

to arrive at

© 3 D)
[E[\Ifk(a,e"“u*)]=/ b\/;|R+|a||-£—|al,/1(dx)+/ b\/;IR—laHl:Ial,ﬂ(dx)
R R
R [y
+/ b\/;lx—|a||£|a|,a(dx)
-R

=I5+ I + I7.

The integral Is computes as
1
I = b—— (R + |a|) e VZ(R*laD)
V2l

In case that |a| < R, I; is split up into

Jal R :
17:/ b\/§(|a|—x)e—«/?<|al-x>dx+/ b\/g(x—|a|)e-‘/§(x—'“'>dx
-R |a|

1 2 b 2
= —b—— (R + |a|) e VE®R+laD | 2 ~VE(R+lal)
V2 2

1 2 b 2
— b—— (R —|a]) e VE®-IaD 4 2 ;~VER-la])
V2l 2

and I; equals
1 2
I, = b—— (R — |a|) e VE(®R-1aD)
YY)

This leads to
E [\I’k(a, e—AuT)] — é (e—\/g(R—lal) _ e—ﬁ(mmn) >0
2

for |a| < R, as the exponential function increases monotonically. Hence, we obtain

E[¥(@, )] - E [W(@ e u)] = b (1 _ e—\/%R—lal)) > 0
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5.5 Consistency of the Maximum A Posteriori Estimator

for |a|] < R.
In case that |a| > R,

2 1 7
I = b\/j““' —R) - b— (|a] - R) e Vllal-R)
*T N2 vz

and
b= b ((|a| _RyeVEIal-R) _ (jg] + R) e—x/%<|a|+R>)
V2l
WP (e VE IR _ o=Vl
2 b
which results in
E [Wi(a e uh)] = b@ (Ia] = R) + g (e VRUaIR = VElaleR) > g

for |a| > R, as the exponential function increases monotonically. This yields E [‘I’k(a, e‘AuT)] =

O

E [Yx(@, y)] in case |a| > R.

Now we state a first results regarding the weak convergence of the expectation of the MAP
estimator.

Theorem 5.43. Let {b,},en and {rn}nen be positive sequences such that b, — 0 andr, — 0.
Moreover, letu' € XT and y" ~ Lo-ayi p2as-p foralln e N If

b r
— —0 and 5 <C
rn bn

for some w € (0,1) and C > 0, then {E[dnmap(y")]}nen contains a subsequence that converges

weakly towards u in X7.

1
Proof. For all n € N set u" := dyap(y"). Define 6, := (C;lbn) ¢ for all n € N, where € := =
and C, is the associated constant from Lemma 5.41. Then §,, — 0,

o) _1 __e 1
1+e _ ~—1 n _ +& +e
5n £ = CE bn and E = Cgl bnl = Cé_wb(’f .

As u™ minimises J,, the inequality
n .n bn ny2 to.n b” 112
P, y") + — "y < ¥@',y") + —lu'lly-
2ry 2ry

holds in particular. We pass on to expected values,

by . A
E[¥@", y")]+ 57 E [llu"1%-] < E[¥(’, y™)] + ?IluTllfa. (5.10)

n n
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Lemma 5.42 guarantees that E [¥(u", y™)] is non- negative so that we can estimate both terms
on the left-hand side separately. The convexity of ||-||3 X allows us to use Jensen’s inequality

and we use Lemma 5.41 as well as the boundedness of bZ) to obtain

2r? ] B
IE[" % < E [llu"l1%-] < b—"fE[‘P(uk,y")] + [ 1%
n
ra 12 " i T2
< Eén +u'lly- = cr wbw + "l < Ccro +lutllx-

from (5.10), where
E[u"] = / un(yn)Le-Au*,bf,As‘ﬁ(dyn) e X*

in the sense of the Bochner integral. So {E[u"]},en is bounded in X7. Thereby it contains a
subsequence, again denoted by {[E[u"]},cn, that converges weakly towards a i € X7. e is
compact, as it is the limit of bounded linear operators

n
U Z e " (u, o) x Pk
k=1

on X with finite-dimensional range. This implies that e is completely continuous, since X is
reflexive and both X and X* are Hilbert spaces. Hence, e AE[u"] — e~# strongly in X*.
It remains to show that @ = u". To this end we conclude

. b b
ELP",y")] < EL¥@y")]+ e < 80+ 2l

n n

from (5.10), again using Lemma 5.41. Now the assumptions on r,, and b,, ensure E[¥(u", y")] — 0.
This implies E[¥(u", e 4u")] — 0, since
0< limE [‘I’(u", e_AuT)] < lim E[¥(u", y")] =

as a consequence of Lemma 5.42. However,

V(" e MUl = \/Ei a:;s (e_AuT, ek)Xs - (e_Au”, ek)Xs
- \/_Z ( ul - e n’(pk)X’
> \/_(i af ’( u' —e A, (pk)xr)

VRl - e
so that the continuity of e™, the convexity of ||-|| ys and Jensen’s inequality yield
le™ Bl = e 5 = JE [ — e[ p < B [lle™u” = e uT]] 5]

1 no At
S\/E[E[‘If(u,e u)]

1
2
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5.5 Consistency of the Maximum A Posteriori Estimator

Consequently, e 4 E[u"] — e “u" in X# and by the continuity of the embedding X# < X*
according to Proposition 5.10 (i) also in X*. Now, the uniqueness of the limit implies e 4u" =
e~47. In a last step, it follows from the injectivity of e~ that & = u'. O

We can achieve strong convergence if we assume that r2 /b% is not only bounded, but con-
verges to 0.

Theorem 5.44. Let {b,}nen and {r,}nen be positive sequences such that b, — 0 andr, — 0.
Moreover, letu’ € XT and y" ~ Loy p2as-p,n €N

b, r?

— >0 and L —0
2 [0

rn n

for some w € (0,1), then E[inap(y™)] — u’ in X7.
Proof. We consider an arbitrary subsequence of {u"},en, again denoted by {u"},en. The min-
imisation property of u” implies
b ¥ b .
E[P@™, y")] + —5E [l ll%-] < E[¥@’, y")] + 1%
2ry 2r;,

The convexity of ||-||f\,, allows us to use Jensen’s inequality, and by Lemma 5.42 and Lemma
5.41 with & := = we have

2r?
IE["I5 < E [l %] < =ZEM¥@”, y™)] +E [llu"1%-]
b
n
2r? . . 2r?
< PR, y™M] + I3, = —2— + [|u]|%.
™ [P, y™)] + llu'llx cropp llu'lly

for all n € N with b, < C,, that is for n large enough. As 3% — 0 by assumption, this implies
that
lim sup ||[E[u"]||§(r < |lu’ ||(2\»f

n—oo

and that {E[u"]},en is bounded in X7. It thereby contains a subsequence, again denoted by
{E[u"]},en, that converges weakly towards a # € X*, which implies

lallx= < liminf [E[u"]llx- < limsup [[E[u" ]l x- < " [lx-

n—oo

because of the weak lower semi-continuity of ||-|| y-. As in the proof of Theorem 5.43, we show
that # = u', so that

E[u"] = u" and lim |E[u"]]|xr = |lu'||x-.
n—oo
Since X7 is a Hilbert space, it follows that

— 0.

JELu —

oo = el - o

XT

As the subsequence chosen in the beginning was arbitrary, the whole sequence {E[u"]},en
converges towards u'. ]
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

5.5.4 Convergence Rate in Mean of the Discrepancy Term

We show that for dimension d < 4, the expectation of the discrepancy term ¥(u', y) converges
at least in the order of b(In C/b)?/? as b — 0. To do so, we need the following inequality for the
incomplete gamma function I'(a, x) := fx “palemtdt,

Lemma 5.45. Foralla € (0,2] and x > 0 we have
T(a,x) < (x* " +|a—1]x*?)e™.

Proof. Integration by parts produces
[(a,x) =x*te™ + (a-— 1)/ 192t ds.
X
Now %72 < x% 2 because a < 2, which leads to

[(a,x) < x%e™ +|a—1|x*2e7™. O

Lemma 5.46. Letd € {1, 2,3, 4}, ueX,b>0 andy ~ Loyt p2ps-p- Forevery C > 1 there is
an ¢ > 0 such that

ol

E [, y)] < C(é)zb £|| Tllx (giﬂ) forall b € (0, ¢).

Proof. By Lemma 5.39,

[Se]

E[¥@’y)]=b Z (1 T exp (_%k))

holds with ¢ := \/Eaf/ze_“k |(u', px)x|. We use Assumption 5.1 (iv) and Lemma 5.14 to estimate

p
V2 13 o3 fzczc,;?_g%_gl
ey le ”’) (O ¢>x|<—(c+) (7’“’) e e T ulIx
E B B
< V(2e) T (BYF bt = Yty (SE)
v \c ) \2 X X e

for all k € N. We define a dominating function f by
2 C _ 2
fli) = %Illﬂll (c+ﬁ) e " forall k € [0, 0).

Note that the function f decreases monotonically. Together with the monotonicity of ¢t —
1 — exp(—t), this allows us to estimate

i(l_eXP(__)) Z(l—exp( f(k)))</ (1 - exp (—f(x))) dx.

k=1
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5.5 Consistency of the Maximum A Posteriori Estimator

Bl2
Substituting t := %K% and setting C; := g”lﬁ”x (gﬁf) leads to

(o)

> (l—exp (—%")) < /Om (l—exp (—Cle_z'cé))dk

k=1
~ 2\t d
= 1- —Ce ) [=] Zetdr
[ oo aen (&) S
We assume that b is small enough, split up the integral at
T = T(b) = lnCl,
and use the estimate 1 — exp(—t) < min{t, 1} for all t > 0 to arrive at
S T2\? = (2\%d
Z (1 — exp (——)) < / (—) T +/ G (—) Lii1etdr
. 2] 2 . c.) 2
k=1
d
2 2
(2 e (2] derp (9 g
C- C_ 2
Applying Lemma 5.45 with a = d/2 and x = T results in
N 2\? (ra d [ 4y |d d o) -T
Z(l—exp(——))ﬁ(a) (T2 +Ee (TZ + = 1‘T )e

ford € {1,2,3,4}. As b tends to 0, T(b) — oo, so that for every C > 1 there is an ¢ > 0, such that

d d\|d
1+-T+ —‘— —1‘T_2 < C forallb € (0,¢).
2 22
This implies
d

- (-5)) < (&) cpanco

E[¥@’,y)] =b

Ms

=~
Il

d B
2\? V2 CiB\*?
Sc(a) b“‘(?“““X(a) )

forall b € (0, ¢). O

NIEW
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5.5.5 Convergence Rate of the Bias

We examine the rate of convergence of the bias under a source condition. To this end, we first
compute the expectation of the components of the MAP estimator explicitly.

Lemma 5.47. Letu’ € X,b > 0 and y ~ L4yt p2ps-p- Then

1
) —exp (_Eck

2
rr
(W', pr)x + Eckakf

E [(@mar(y)s @x)x] — (UT, Pr)x

_p ! 1 2
= 20 exp bck

. r _
(u', pr)x + ?Ckakf

2
r —
(uT’ (Pk)X - Eckakr

)

T

2
F X(—eo~(uh,01)x) (Eckak) )

2

r T
- X(—oo,(uT,q)k)X) Eckak ’

2

re
W', pr)x - Ecwkf

forallk € N, where ¢, := \/Eaf/ze_“k.

Proof. Consider a fixed k € N. By Lemma 5.34 and the definition of the X* norm the k-th
component of the MAP estimator @ := fivap(y) is given by

2 p__ 2 g
(ﬁ(y),wk))(:max{—\/i%akz e_ak,min{e“k(y,(pk)x,\/ir_akz e—ak}}

b
S 2 S ﬁ S 2 S ﬁ
_s re s, B_ _s re s, B_
— ak 2 0% max {_\/530[]§+ 2 Te_Zak, min {(y’ ak 2 ﬁok)XS, 23OCI:+ 2 Te_Zak}}
= y max {—R, min {x, R}}, (5.11)
where
_s _s r? syb_p
x =, o)xs, y:=a e* and R:= —\/50(]? 2 g%k,

b
Now x = x(y) ~ L, 1 with

a:= (e Ul ep)xs = %(u*,(pk)x and A= b} P,
We compute
E (00 000x] = [ @000 Lo nrs @)
:‘/Rymax{—R,min{x,R}}La,/l(dx)

-R R 00
. / (~yR) Lor(dx) + / yxLaald) s /R VR Lo 2(dx)

0 —

_R 00
/R 3 Lo 1(dx) + / Y (<R = x) Lo 1(d) + /R Y (R = x) Lo 1(d)

(%Y

=L+ +I.
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5.5 Consistency of the Maximum A Posteriori Estimator

Note that I; = y fR xLg 2(dx) = ya = (u', px)x. For R < a, the last integral computes as

é 1 7 © 1 5
I = / (R - x) —e_\/;(“_x)dx + / (R-x) _e—\/;(x—a)dx
3 . Y N3 j Y oy
= [y (R-x) le—‘/?(a—x)] _ / (_Yle—\/?(a—x)) dx
2 R R 2
- / y%e_‘/g(x_“)dx

+ YR - _K\/Ze—\/?(x—a)
® 2 2\V2

+

1
-y (R-x) Ee_‘/?x_“)}

a

= (R—a)—- l—x\/ze_‘/?(a_x)
2 2V2

A 2
=-y(a—R) - g\/;e—\/:(a—R)‘

(o9

a

Otherwise, thatis if R > a,

*® 1 2
I :/ (R-x) —e_‘/;(x_“)dx
’ R ’ V24
p o0 A P -
= [-Lm-me Vi [_x\ﬁe—m-aﬂ
R 2V2 X

__Y \/Ze—x/?ue—a)
2\ 2

We can combine these to

Y A _\JZ R
Iy = —E@e VARl Y (®)Y IR=al,

where yy denotes the characteristic function of a set M. A similar computation yields

A T
= LR VIR Oy R a.

By summing up, we obtain

E [(11, (Pk)x] - W', p)x = K\/g (e_"/glR_(_“)| - e“g‘R“”)

2
+ ¥ (Yoo~ IR = (=0)| = Yo, 0)(R) IR - al) .
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Resubstituting a, A, R and y results in

E [(@ or)x | — @', or)x
B
—bﬁak e’ (exp (——\/_a e %k
— exp (—%\/Eakze_“k
+ X(~co.~(u, ¢k>x)( ‘/_“ ) )

r b_r _
T X(~c0,(ut, r)x) (?\/Eakz e Ofk) .

(', ﬁl’k)x+—‘/_0€ e

)
)

(', pr)x + —‘/_0! e %k

K r 2 _
(', pr)x — —\/Ea,f e

re b_
@', pi)x — E\/Eakz ek

B
Inserting ¢ = \/Eakz e~ %k finishes the proof. O

Under a source condition we can show that the bias converges at least in the order of the
noise level.

Theorem 5.48. Letu’ € X, b,r > 0 andy ~ L,-a, p245-5. If aw € X exists, such that

B

uf = A777e 4w and sup|(w, pr)x| < p,
keN
and if
r? > pb,
then
1
H[E [amar(y)] — u || TrA ﬁ)zb

Proof. We have
Eldmap] = /X Unmap(Y) Loyt p2as-s(dy) € XF.

By Proposition 5.10, X is continuously embedded into X, so that (-, ¢x)x is continuous on X”.
This allows us to write

IE [aniae] - 5 = D [E lavar] pi)x — (o] = > [E [(mar. ox)x ] = @' gr)x|”
k=1 k=1

We want to use Lemma 5.47. The assumptions on 1 and r ensure

B B _
00 =[5 ) | = 2447

2 £ ﬁ_ 2 2
= e 2%l [(wopr)x| < af TeP%p < 3

’*‘ RS

T2k (5.12)
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5.5 Consistency of the Maximum A Posteriori Estimator

for all k € N. In particular, |(u', p)x| < \/5%055/2_%_% holds. Thus the last two terms in the
expression in Lemma 5.47 are equal to zero, that is

. 1 1 rt
E [(@vaps ox)x | — (', or)x = ba (eXp (—Eck ((UT, Pr)x + 5 Gk ))

1 r? _r
— €Xp (_Bck (3%0!;{ - (uT’ ka)X)))

2

1 o L)L 1 4
= ba exp (—b—zckak ) sinh (—Eck(u ) <Pk)X) ’

where ¢ := \/ﬁal'f / 2e=@% The hyperbolic sine is convex on [0, c0) and odd, which leads to the
estimate
|t]

Sh(T)<||T

| sinh(t)| = sinh(|t|) < —= T

forallt € Rand T > [t|. We apply this inequality with ¢ := ——ck(u or)x and T := r—z i a. "’ as
well as (5.12) and obtain

IE [(nars 00)x ] — (6" o)x| = bi exp (=T) [sinh (1)] <

N — >~
IA ;;lr—l
=
R
bl
.yl

_ |(u @k)x| (4 . I:—ﬁemk

Squaring and summing up results in

IE [diar] - 7] < Z —ab = — (m—ﬁ) b,

which finishes the proof. O

Note that Theorem 5.48 yields convergence of the bias in the order of b as b — 0 even if r is
chosen constant.

5.5.6 Convergence Rate of the Mean Squared Error

Now we consider the rate of convergence of the mean squared error under a source condition.
By Lemma 5.34, the components of iiyap are independent, so that

E [llamar —u'll%] = E Z |(Gnmap — u, <Pk)x|z = Z E [|(ﬁMAP —u', (Pk)Xlz] :
k=1 k=1

We first compute the componentwise expectations.

85
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Lemma 5.49. Letu’ € X,b > 0 and y ~ Lo-ayt p2as-p. Then
. 2
E [|(UMAP(3/) - UT, <Pk)x| ]

:_f( ak + |, (Pk)X||) (— r le " | ‘pk)X”)

Ck ¢ b Ck Ck _T
* X, It i)x D (rzgak )—zg(ﬂr Lo (G <Pk)XH)

k
forallk € N, where ¢y := \/ﬁaf/ze_“k,
ft):=1—e'—te" and g(t):=t>-2f(t)

forallt > 0.

Proof. Let k € N be arbitrary, but fixed, and set @ := #iyap(y). By Lemma 5.34 and (5.11) we have
(@, px)x = y max{—R, min{x, R}},
where x = x(y) = (y, alzs/z(pk)xs, y = a;s/zeak and R := r—;\/galsc/erb/z_Te_z“k. Asx ~ L,

with a := %(uT, ¢r)x and A := bzaz_ﬁ, we have
E[l(@-u', pp)x|?] = /X (@, @)x — (U’ @)X 1P LAyt poas—p(dy)
- / |y max{~R, min{x. R}} - yal’ La.1(x)
R
-R R
- / V2I-R = al? Lo 7(dx) + / V2l = af? Lo ()
—co _R

+ /R VIR = af? Loy (dx)

—R-a e
— V|-R-af? / £3(d2) + YR - af? /R £5(d2)

R-a -
+y2/ 22 £,(dz)
—R-a
=L+ +I.
Now
—R-a —R+a
L+1, =y*|-R- a|2/ L;(dz) + y*|-R + a|2/ L,(dz)

—R-|a| —R+]a]
= V|-R— |al? / £3(dz) + Y2|-R + |al ? / £3(da).

(&) —00

In case R > |a| this equals

L+ = pP|-R ~ Jal P e VI Flell 4 2R oy g 2o VERelal
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and the remaining integral equates to

0 0
L= y2/ 22 £,(dz) + )/2/ 22 £;(dz)

—R-a —R+a
0 0
[ dney [ 2o
—R—|a]| —R+|a|

= R~ lalfP e VA lall 42 (\ﬁ R~ |a||)
— R+ fallP e VAR 2 (\ﬁ R+|a||)

where f(t):=1—e! —te”! forall t > 0, which adds up to

E [l -, gok>x|]—y f(\[l R~ |a||)+y2§f(\[m |a||)

(s

r le "+ |, qok)xl‘)

v (Pl ol

for R > |al.
In case R < |a| we compute

1 _\/Z\p_
Il+12=y2|—R |a||22 \/_I R- |a||+), IR - |a||2( _Ee \/:|R |a|)‘

R—a R+a
L=y / 2 L3(d2) = ¢ / 2 £(dz),

—R-a —R+a
we can compute this integral as

2 R_Ml 2
L=y / 2 £3(d2)

—R-|al
1 1
= y?IR = [al [ Se VAIRlall — y2|_R — |g] [ Ze=VI=R-lel

+ 2R - |a||\/je VEIRr- |a\|+y e~ V3IR-lall
— y?-R - |dl| _e -VZI-r-lall _ 22 —v%I-R-lal|
= IR lalf* e e VR~ |a||2 ~VElR-lal

oy (\@—R— |a||) —yzgf(\@ze— |a||) .
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

This adds up to
E [l - u'oox] | = IR = lall? +y? f(\/il -R- |a||) Y f(\[ue |a||)
e o)+ 5 (e -l
—%(%\rz%a:—|<uwk>xu>
in case that R < |al. O

Now we can show that under a source condition the mean squared error converges at least
in the order of the noise level.

Theorem 5.50. Letu’ € X, b,r > 0 andy ~ Lo-ayi pras-p- If aw € X exists, such that

B
u' = A77ew  and  sup|(w, r)x| < p,
keN
and if there is a C > 0, such that

P 2
~—b < r* < Cb,
V2

then
E [llamar(y) — u'll%] < 2C(TrA™")b.

Proof. Since the components of @yap are independent by Lemma 5.34, we have

Z |(UMAP —u' ¢k)x| Z [|(UMAP —u' (Pk)X| ]

[||UMAP - UTHX =

We apply Lemma 5.49. The requirements on u' and r ensure

. B B
ol ) |- et
|, pi)x]| |( e woor) | =|(we o).

m

_ak 0k

L- r2 g_f -«
=e |(w<pk)x|<a e pS?\/Eak e %k
for all k € Nand n > N. Thus the last term in the expression in Lemma 5.49 is equal to zero,
that is,

£ (5 (e 4l o)

E [|(L7MAP —u', <Pk)xlz] =
k

)

k
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5.5 Consistency of the Maximum A Posteriori Estimator

for all k € N, where ¢ := \/Ealf/ze_“k and f(t) == 1-e' —te”! forall t > 0. We use the
estimate
fity<i1-e ' <,

that holds for all t > 0, and obtain
~ 2 _
E [|(uMAp — uT, (pk)Xl ] < 2r2akf.

Consequently, by the choice of r, we have

E [llamar - u'[12] < 272 Za,;f =2Tr(A)r? <2CTr(A7)b. O
k=1

Theorem 5.50 shows in particular that the MAP estimator is consistent, since its convergence
towards the true solution in mean square implies convergence in probability by Markov’s
inequality.

We classify the stated rate of convergence by comparing it with the optimal convergence
rate of the minimax risk in the case of Gaussian noise. Here we consider the setting of [Ding
and Mathé 2017], which provides a comparably general framework for deriving minimax rates.
Minimax rates for the particular case of an exponentially ill-posed problem with analytic
smoothness of the solution have been established in general in [Cavalier et al. 2004], and for a
specific problem in [Golubev and Khasminskii 2001].

We fix the dimension d = 2 and assume that the eigenvalues of A associated with the
eigenvectors ¢y are exactly

o = pkid = pk forall k € N. (5.13)
Moreover, we assume the presence of Gaussian noise
N~ Nys-p

instead of Laplacian noise.
Now we can restate the problem within the framework of [Ding and Mathé 2017]. The model
considered therein is
y? =Tx + ¢, (5.14)

where T is a compact linear operator between Hilbert spaces X and Y with singular system
{(Sj, uj, Uj)}jEN: i.e.,

(o)

Tx = Z si(x, vj)xuj,

Jj=1

£ is Gaussian white noise, ¢ > 0 is the noise level and y? is the noisy data. If s; < e”?/ then the
problem is called severely ill-posed or exponentially ill-posed. We can bring equation (5.3) into
this form by choosing

B
T=Aze ™4,
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

B . .
o=b,x=u,s;=(pj)2e? <e P andv; = u; = ¢; forall j € N.
Model (5.14) in turn is equivalent to the sequence space model

zj =0+ 00;5, &~ No,

where 0; = (x,vj)x = (u,¢;)x and gj = s]._1 = (pj)‘gef’j, if x is in the orthogonal complement

s
of the kernel of T. This is the case because both e and AZ are injective.
The true solution is assumed to be an element of a Sobolev-type ellipsoid

0u(0) = {e =) ) a0 < }
j=1

where a = (a;)72,, aj > 0, is a given increasing sequence and Q € R.If a; < €*/ for some

Kk > 0, then the solution is called analytic. We obtain the source condition from Theorem 5.50
B . : . .

by choosing a; = (pj)* " zef’ < e/, so that k = p,and Q = p%. In order for a to be increasing,

B

2" A .

The considered risk is the root-mean-square (RMS) error (E[||0 — 0||22])5 of an estimator

we moreover assume that 7 >

6 = é(z"). The minimax risk on the class ©, is then defined as

e(Qg4,0) := i%fesél@i ([E [Ilé - 9”22]);’

where the infimum is again taken over all estimators 0 = é(z") that are based on the data z°.
The main result of [Ding and Mathé 2017] now states that

* 1)
€(04.0) < inf [5—+0 Zs—z < 2.2¢(0y, 7).

D41 Jj=1"J

As a consequence of this, a minimax rate
K 1
e(@,,0)<0oP* =02 aso—0

follows for severely ill-posed problems with analytically smooth solution. This translates into
our notation as follows:

inf sup E [”ﬁ —uT||§] =b asb—0.

U uieo,

Note that here the choice k¥ = p results in a rate independent of p.
Considered in this context, Theorem 5.50 provides an upper bound for the minimax rate in
case of Laplacian noise, namely

inf sup E [||la —u'|l2] < sup E [|linar — u'[12] < 2C(Tr A7)b.

ute®, uted,

This shows that at least for d = 2 and @ = pk the optimal rate of convergence of the minimax
risk for Laplacian noise is not worse than for Gaussian noise.
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5.6 Conditional Mean Estimator

Here we compute the conditional mean estimator Zicy; explicitly and use the results from Section
5.4.2 to show that small changes in the data y € X° cause only small changes in the CM
estimator.

The conditional mean (CM) estimator ticy: X° — X is defined by

on(y) = ¥ [u] = /X 2 (du),

ie., for every y € X*, éicm(y) is the mean of the posterior distribution . We consider a single
component

(dem(y), om)x = ( /X u p” (du), qom)

As (-, om)x 1is a continuous linear functional, this equals

X

(M), om)x = ‘/X(u, (Pm)X,Uy(du) - ‘/X(u’ q)m)X%y) exp(—®(u, )0 ()
_ /x(“’ Om)x exp(—P(u, y))po(du)

¢ exp(=®(u, ))po(du)

We work with the orthogonal projections onto finite dimensional subspaces P, defined by

n
Ppu = Z(”’ k)X Pk
=1

forallu € X and n € N. Now
exp(—®(Pnu, y)) — exp(-D(u,y))
for all u € X because P,u — u as n — oo and ® is continuous in u. Moreover,
|lexp(=@(Ppu,y))| < exp(L||Pnullx) < exp(Lllullx)

by Proposition 5.23, where L > 0 is the Lipschitz constant of ®(-, y), and exp(L||||x) € L}(X, uo)
by Lemma 5.26, so that exp(—=®(P,,-, y)) € L'(X, po) for all n € N, too. We may apply Lebesgue’s
dominated convergence theorem [Klenke 2014, Cor. 6.26] and obtain

/ exp(—®(Pot, y))pio(ds) / exp(—®(u, y))poldu).
X X

Also,
(Pntt, m)x exp(=P(Ppu, y)) — (4, om)x exp(—P(u, y))

forallu € X and

|(Patt, om)x exp(=(Pnu, ¥))| < |lullx exp(LIlullx)
< exp((1+ L)|lullx) € L'(X, po),
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

so that (P, ¢m)x exp(=®(Py-, y)) € LY(X, po) for all n € N. Here Lebesgue’s dominated conver-
gence theorem yields

/ (Pt om)x exp(—0(Putts y)o(d) — / (1 ) €xp(—D (11, y))po(de).
X X

Note that foralln € N, ®Z:1 N,z a7 1S the pushforward measure of N,:,-- under the projection
Yn: X = R™ yn(x) = ((x, ¢1)x> - - - (x, ) x). This allows us to write

/X exp(—(Pot, y))pio(du)

n 5
- / [ e —%Ofﬁ (s pr)x — €% (w or)x| = (v ‘Pk)XD) Ny2a-= (du)
x k=1

n

B n
:/l_lexp —%a,j (l(y’(Pk)X—eleuk|—|(y,(pk)x|))®erakr(duk)
R” k=1 k=1
B 3
- ]_[ / exp —%a; ((y, or)x — € ug| — |(y, (pk)XD) Nyzg—r (dug). (5.15)
k:lR

On the other hand, for n > m we have

/X (Patts 9m)x XD~ ®(Pots y)pio(du)

n B
= / (. pm)x | [ exp (—%a; (1 gr)x = € (s pi)x] = 1, <pk>x|>) Ny (du)
X

k=1

B
= /um exp (_?arz (1> om)x — e M| - |(y. (Pm)XD) era,’,f(dum)

R
T [ exe | (0nox =& %l = 1 00)x]) | Nz (d). (5.16)
k=1
k#+m

So, if we divide (5.16) by (5.15) for n > m, all factors except for one cancel out and we obtain
[ Putt, om)x exp(—D(Ppus, y))pro(du)
[ exp(=@(Ppt, y))puo(du)

2 b
/ Um €XP ( - ia,fl |Ym — e_amum|)era;lr (dum)

.
/exp(— b U |ym — € muml)era,‘n’(dum)
R

V2 & 1
xexp| - —a, —e mx| — —afxz)dx
[xew (= Fanlm -l soa,

V2 & _ 1
/Rexp ( - 70{,,21|ym —e Ymx| — Z—ﬂa;xz)dx
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5.6 Conditional Mean Estimator
where y, = (y, om)x. Consequently,

(dea(y) 1y = lim, 00 fX(Pnu, Om)x exp(—P(Ppu, v))po(du)
R limy, o fx exp(=P(Ppu, y))po(du)
. /X(P”“’ ¢Om)x exp(=P(Ppu, y))po(du)
= lim
o [ exp(=@(Pyu, y))po(du)

2 L 1
/xexp(—%a,ﬂym—e_“”’xl ’ 2)dx
_JR

- z—rz[me
V2 8 1 '
exp| — —a? —e mx| - —ar xz)dx
./[R P ( p &m |Ym | opz m
We further rewrite this as

x exp(—ax? — |2bx — ¢|)dx
(M), om)x = /R Pl | )

/R exp(—ax? — |2bx — ¢|)dx
with

a:—1 L \/Eg_“’”

= 2,2 %m = o dme and c:=

B
b aﬂz’l(y’ (pm)X'

We will use the following lemma to compute these integrals. In it the complementary error
function erfc appears, which is defined on R by

2 0 2
erfcx = —/ e~ dt.
Vr Jx

Lemma 5.51. Foralla > 0 and b, c,x € R we have

. 1 b? b
/ exp(—at? — 2bt — ¢)dt = 2 z exp (— - c) erfc (\/Ex + —) ,
x a a

\a

00 2
/ t exp(—at® — 2bt — ¢)dt = —élﬁexp (b— - c) erfc (\/Ex + i)
x a2\ a a

a

and

+ — exp(—ax® — 2bx — ¢).
2a
Proof. We differentiate the right hand side of the first equation,

%[;@exp(gz_c)erfc(mi)] |
3w (2 =) -~ (varr 2] ) i

Va
b? b?
= —exp (— -c- (ax2 + 2bx + —))
a

a
— exp(—ax® — 2bx — c).
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Now the first equation follows from the fundamental theorem of calculus, as erfcx — 0 as
x — oo. We proceed in the same way with the second equation,

1 2 1
% [—ggﬁexp (% - c) erfc (\/Ex + %) + 0 exp(—ax® — 2bx —¢)

b 1
P exp(—ax® — 2bx —¢) + % exp(—ax® — 2bx — ¢)(—2ax — 2b)

= —x exp(—ax® — 2bx — ¢).

We split up the integral in the denominator into

/ exp(—ax® — |25x —c|)dx
R

c

= /Zh exp(—ax® + 2bx — c)dx + / exp(—ax® — 2bx + c)dx

o =
2b

= / ‘ exp(—ax? — 2bx — ¢)dx + / exp(—ax? — 2bx + ¢)dx.

2b 2b

By Lemma 5.51, this equals

/ exp(—ax* — |25x —¢|)dx
R

I b2 vac b b2 vac b
—5 E[CXP(;—C)CI'fC(—E'F%)+6Xp(;+C)CIfC(¥+%)}
= y e “erfe(y-) + e erfc(yy)]

with

1 T (52) b +ac and b +\/Ec
= ]—exp|—], yv.=—--— = —+ —.
CZoNe P\ ) T Y

We split up the numerator in the same manner into

/ x exp(—ax? — |215x —¢|)dx

R

= /2’; x exp(—ax® + 2bx — ¢)dx + / x exp(—ax? — 2bx + ¢)dx
—oo i

= —/ x exp(—ax* — 2bx — c)dx + / x exp(—ax* — 2bx + c)dx.

26 2b
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Now, by Lemma 5.51, we have

‘/xexp(—ax2 — |2bx — ¢|)dx
R

= é%\/g[exp(%z—c)erfc(—%+%) —exp(%2+c)erfc(%+%)]

1
+_
2a

= Ry [e erfc(yy) — e erfe(y-)]

( ac? . )+ ( ac? N )
— eX - == c—¢C €exX —— —C Cc
P 4b2 P 4b?

with R := Z%Zag,/z_re_“m. This results in

e “erfc(y-) — e erfe(yy)

i ’ m = R ’
(dem(y)s om)x e~ erfe(y_) + €€ erfe(ys)

Using
b 2vac
2 = (e by -y = BV
Vi =v2= (e +r-)rs —v-) N
we can finally express the components in terms of the scaled complementary error function
erfex(x) = exp(x?) erfc(x) as

eV erfe(y-) — eVt erfe(yy) Rerfcx(y_) — erfex(yy)
e¥? erfe(y_) + e¥+ erfe(yy) erfex(y-) + erfex(y, )

(dcm(y), om)x = R (5.17)

This formulation will be beneficial for the numerical computation of the CM estimator, since
erfcx(x) decays slower than erfc(x) as x increases.
Now we consider the continuity of dcy.

Theorem 5.52. Ify" — y' in X* then
dem(y™) — dien(y")
inX.

Proof. First, we write the conditional expectation of u for any y € X* as

B u = /X D@ er)xorp? (du) = /X (, p)xp” (dw)pr = > B (. i) x g
k=1 k=1 k=1

Parseval’s identity yields

|§( = Z |E* (u, )x — E* (u, <Pk)x|2
=1

||[E'“yu —E*u

for all y,z € X*. Now (-, o )x € L*(X, p?) for any y € X%, as

|(u, @i)x|” exp(=D(u, y)) < llullk exp(Llullx) < 2 exp (1+ Dlullx), (5.18)
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and exp((1+ L)||u||x) is po-integrable by Lemma 5.26. So, we may apply Lemma 5.31, and obtain

z 2 z
|E# (u, 1) x — E* (u, pi)x| < 8 ([E”y|(u, oix|® +EF |(u, (Pk)X|2) duen(p?, p?)*  (5.19)

for all y, z € X*. Summing up yields

n F 2 b n T n T
e u e < 38 (B i o + B N pux ) disa?” 7

n T n +
=8 (B Jully + B 1wl ) dusen(e” 17"
< 16Cdwen(p?", 1),

where

Com /X % exp(Lllullx)po(du)

is finite due to the previous considerations. Now the proposition follows from the convergence
duen(p?”, ,uyT) — 0 according to Theorem 5.30. O
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6 Numerical Study of the Inverse Heat
Equation

In this chapter we consider the inverse heat equation with finite-dimensional data. We will
compute both MAP and the CM estimator exactly and, moreover, derive a direct sampler for the
resulting posterior distribution. Such a sampler can be used for example to compute integrals
over the posterior by Monte Carlo integration or to approximate credible sets. Our goal is
to illustrate the results from Chapter 5 and beyond their scope study the behaviour of both
estimators numerically.

6.1 Problem Setting

We consider the classical one-dimensonal inverse heat equation on the interval D := (0, 1).
Given a noisy temperature measurement y € Y := L%(D) at the time ¢ := 0.002 we want to
reconstruct the temperature u € X := L%(D) at time 0. As described in Subsection 5.3, this
corresponds to solving the operator equation

y=elu+n, (6.1)

where A := —tA = —taa—jz is the scaled weak Laplace operator in L?(D) with domain D(A) :=
H*(D) N H}(D) and 7 is the noise. Here we assume that n € X° = L*(D), i.e., we choose s := 0.
Moreover, we assume that u ~ N,24-- and n ~ L;2,-5, independent of each other, where
,p > %l and r,b > 0, as in Subsection 5.2.

The operator A is Laplace-like, as pointed out in Example 5.5, so that we are in the setting of
Chapter 5 and the posterior distribution ¥ on L?*(D) is given by Theorem 5.28. For every k € N,
the function ¢: (0,1) — R,

Pr(x) = V2 sin(rkx) for all x € (0, 1),

is an eigenfunction of A (in particular, ¢, € D(A)) with the associated eigenvalue oy := tr°k>.
Moreover, {g }xen forms an orthonormal basis of L?(D) by Proposition 4.5.2 (iv) in [Zeidler 1995]
and thereby satisfies Assumption 5.1 (iii). The eigenvalues {ay } ey are positive, non-decreasing
and quadratic in k, so that they satisfy Assumption 5.1 (iv) withd = 1and C_ = C; = tr?.

We want to numerically verify the behaviour of the CM and MAP estimators predicted
in theory and study their behaviour beyond the scope of the theory. We will compute both
estimates for data resulting from different values of the unknown u. Here we adopt a frequentist
point of view and assume that there is a true solution u' € L?(D). We consider three different
scenarios:
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6 Numerical Study of the Inverse Heat Equation

« Scenario I: There is a source element w € L?(D) such that

B
u'=A777ew and  sup|(w, pr)x]| < p.
keN

« Scenario 2: u' € X”.
« Scenario 3: u" € L*(D).

Scenario 1 is precisely the setting of Theorem 5.50. The motivation for Scenario 2 is that
R(@nmap) € X7 by Definition 5.35, which leads to the question if here, the MAP estimator
performs better than in Scenario 3.

We will divide each scenario into two subscenarios, labeled a and b, one with rougher noise
and one with smoother noise. In Scenarios 1a, 2a, 3a we choose = 0.65, in Scenarios 1b, 2b,
3b we choose f = 1.3. In both cases, f > 5 = s + %. Note that in Scenario 1, u" depends of j,
whereas in Scenarios 2 and 3 it does not. Moreover, we choose 7 = 0.55 throughout. This way,
d

1—_
T>2—2.

6.2 Discretisation

Now, we assume that instead of the exact data y we only have knowledge of its orthogonal
projection

N
YN = Pay = ) o)k
k=1
to the finite dimensional subspace Uy := span{¢y, ..., pn} C L?(D) for some N € N.

We saw that the resulting posterior measure p” " will be close to the exact one in the
sense of the Hellinger distance: By Theorem 5.30 the convergence of yV towards y implies
dyen(p” N 1Y) — 0. The posterior estimates using y” are also close to those using the exact data
y: Theorem 5.38 tells us that ﬁMAP(yN) — tpap(y) and Theorem 5.52 tells us that QCM(yN) —
iicm(y) in L?(D) as N — oco. Moreover, the componentwise representations of éiyap from
Lemma 5.34 and of dicy from Section 5.6 show that only the first N components of ﬁCM(yN )
and ﬁMAp(yN) are nonzero, i.e., both ﬁCM(yN) and ﬁMAp(yN) also belong to Uy.

Motivated by this observation, we discretise the problem by projecting both sides of the
operator equation (6.1) to Uy. Using

N

Pyeu = Z e (u, )2k = € Py,
k=1
this leads to
Pyy = Pye du + Pyn = e A Pyu + Pnp. (6.2)

In a next step we identify Uy with RY: We can restate (6.2) as a linear equation

y=Kii+7 (6.3)
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in RY with the N x N diagonal matrix
K :=diag(e™™,...,e N)

by setting y = yn(v), & = yn(u) and 77 = yn (1), where yn(u) := (4, ¢1)125 - - -, (U, oN)12) for all
u € L(D). As ¢4, . . ., @ is an orthonormal basis of Uy, we have

N
1Pvulf, = Y 1w @)zl = llyw @)} forall u € LA(D).
k=1

We also define the discretisation of the operator A, the N X N diagonal matrix
A= diag (ay, . .., an).

Moreover, we denote MAP and CM estimator on R™ by

N
upmar(M1s - - -, YN) = YNUMAP (Z yk(Pk)
k=1

and ftCM(yl, .. YN) == YNUCM (Zszl yk(pk), respectively.

6.3 Numerical Implementation

In this section we explain in detail how we will create the true solution in the different scenarios
numerically, how we will generate samples of the Laplacian noise and how we will compute
MAP and CM estimates numerically.

In the frequentist setting we create a true solution in the following way: We first discretise
a piecewise constant function f; € L%(D) on an equidistant grid on [0, 1] with grid size ﬁ,
where the value of f; in the points 0 and 1 is bound to be 0. Then we represent f; using the

discretised first N eigenvectors of A,

0, pi [— N o) k=1..N
’(Pk N+2 7""(pk N+2 ’ ” e LR ) ’

as a basis. Subsequently, we either directly use this element w € R" as the true solution i

+

(Scenario 3), or we apply A~7/? to W to obtain an element corresponding to a function in X*
(Scenario 2), or we create the true solution by successively applying to w the discrete forward
operator K and AP/?=7 (Scenario 1).

The discretised noise 7 by definition has the distribution £ 45 o y5', the pushforward of
the noise measure L. -5 under yy. And as y&l(A) = I;,... N.a is a cylindrical set for every
A € B(RN), this measure is by definition a Laplacian product measure on R, so that

N

~ _1 _

n~ ‘£b2A‘ﬁ VN = ® ‘Ebza;ﬁ'
k=1
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6 Numerical Study of the Inverse Heat Equation

The independence of the components 1 allows us to draw a sample ;7 ~ ®sz1 L, s of
k

the noise by sampling each component individually. We do this by the inverse cumulative
distribution method, which is described in Subsection 6.4 and will also be used for sampling the
posterior. We generate ry, r]’c ~ unif(0,1), k = 1,..., N, independently and then assigning

ﬁ . 7? /
e =~ sign(rg — 0.5)ba, * log(1—r;) fork=1,...,N.
In the frequentist setting, we then generate a data sample from j := Ku' + 7.

By Lemma 5.34 the components of the MAP estimate diyap(y") are given by

2 2

(ﬁMAP(yN), ¢k)rz = max {—%Rk, min {e“k(yN, Or)X> %Rk}} forall k € N,

where R = \/E(x]f/z_re_“k. In particular,

(ﬁMAP(yN), o)z =0 fork > N.

So diyap(YN) € span{gy, ..., ¢n} and we only need to compute its first N components.

In Section 5.6 we found that components of the CM estimate éicy(y") are given by

erfex(y, ) — erfex(yy)

. N
, =R . 6.4
(Iem(y™ ) e)x kerfcx(y,;) +erfex(y) (6.4)
for all k € N, where
b _ b +ac b +ac
Ry = —, Yo = —=——> Vi = —=+—,
a va 2b Va  2b
1 - N2 B 2
a:= ﬁa,:, b:= E“kz e %k, = T“kz (v, or)x -
Again,
(uem(YN), @)z =0 fork > N,
so that zicy(yN) € span{¢y, . .., on}, too, and we only need to compute its first N components.

We have expressed (6.4) in this form because it allows us to evaluate erfcx(x) = exp(x?) erfc(x)
instead of erfc(x), which decays slower for x — +co. However, erfcx(x) increases very fast for
x — —oo, which is why we will only evaluate it for nonnegative values of x. We can do this by
using the identity

erfex(—x) = 2 exp(x?®) — erfex(x),

which follows directly from the symmetry erfc(—x) = 2 — erfe(x).
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6.4 Direct Posterior Sampling

In case y; > 0 and y, > 0, we can evaluate (6.4) as it is. In the remaining cases we perform

some transformations in order to evaluate the k-th component of éicy(y"N) sufficiently numeri-

cally stably. Note that y,” and y,_ cannot both be negative, as L > 0.In case Yp 2 0andy, <O,

Va
we replace erfex(y, ) = 2 exp((y, )?) — erfex(—y, ), which leads to

2 exp((y;)z) — erfex(—y, ) — erfex(y)

2 exp((y; )?) — erfex(—y) + erfcx(y,j)’

2 — exp(—(ylz)z) [erfcx(—y]:) + erfcx(y,:)]
k 2 - exp(—(ylz)z) [erfcx(—y];) - erfcx(y; ] i

(Gem(y)s @r)r2 = R

In case y; < 0 and y, > 0, we replace erfex(y/) = 2 exp((y; )2) — erfex(—y,"), which results in

erfex(—y;) + erfex(y;) — 2 exp((y;)?)
k erfCX(—}ﬁ:) - erfcx(y;) +2 eXp(()/,':)Z)’
exp(—(y,:)z) [erfcx(—}’k_) + erfcx(y;)] -2
: exp(=(y)?) [erch(—}’k_) - erfcx(y,:)] +2

(dcm(y), o) = R

6.4 Direct Posterior Sampling

In order to implement a posterior sampler that samples the first N components of the posterior
u~p N, we need their marginal distribution, or, in other words, the distribution of the projec-
tion of the posterior to Uy = span{¢y, ..., ¢n}. Here, we could also choose a subspace with
a dimension different from N, but this would either result in a loss of part of the information
contained in y, or in no gain of information, because additional components would be com-
pletely determined by the prior. If we identify Uy with R", then this distribution is given by
the pushforward

uN = oyt

of N under the projection yx: X — R,

YN(u) = ((u7 (pl)Lz’ cees (u9 (PN)LZ)-

Unlike p¥ ™ which is still a measure on L%(D), uN constitutes a measure on RY. By definition
of N4--, we have

pNM) = 1™ ({u € X ynu € M))

1
- ZN(y) / eXP(_(I)N(U, YN,z 4 (du)
{ueX:ynueM}

N N
1 V2 & o
= % / exp |~ (v = ¢ il = 1) | | @) Ny | (dv)
Z ()’)M k=1 k=1
N
Cn ‘/E s —ag 1 2
= | | -—a —e - - —ay dx
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6 Numerical Study of the Inverse Heat Equation

for all M € B(RN), where yi = (y, ¢x)x, x = (x1, ..., xy) and

Cn = ((Zn)d ﬁ (rza,:T)) .

k=1

eI

A similar computation yields the normalisation constant

ﬂWhamwiﬁmﬁmmwmmww
X

_ / exp(=®N (u, y) N,z (du)

X
N 8 N
= / ﬂ exp (_%akz (ka - e_“kxk| - ka|)) (® era;r) (dx)
RN k=1 k=1

N

V2 8 _ 1
=Cqn /exp —70(]{2 (lyk — et = |ykl) — —Za,:tz dt.
k=1 2r

Consequently,

2 b 1
exp ( - %akz |y — e “Fuy| — —a,fui)
d

N

uN(M)=/]_[

M kzl/exp —ﬁa%yk—e_“kﬂ—ia”z dt
R b k 2r2 k

for all M € B(RYN). So, the approximated posterior yV has a probability density ppost With
respect to the Lebesgue measure on RN of the form

N
Ppost(aa, -, un) = | | pru)
k=1

with 3
exp(—arx? — |2brx — ck|)

fR exp(—at? — |26kt — ci|)dt

pr(x) =

forallx e Randk =1,..., N. Here,

1, - 2 B V2 s
ar == —ay, br:=—ale * and c;:=—a’(y, .
k 272 k k op k k b k(y qok)X
N

Hence the components uy of u ~ y* are by definition independent.
This independence allows us to draw a sample u ~ p from the marginal posterior distribution
by sampling each component uj individually. We have seen that the probability density p of a

single component uy is of the form
1

plx) = Z exp (—ax® — |bx — )
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6.4 Direct Posterior Sampling

witha,b > 0,c € Rand Z = /R exp(—at? — |bt — c|)dt,
Now we develop a direct sampler for a distribution v with density p that uses the inverse
cumulative distribution method. The cumulative distribution function (cdf) F of uy is defined by

F(x) = [ p(t)dt

0

for all x € R. In general, F™!: [0,1] — R denotes the generalised inverse of F, in our case,
however, the ordinary inverse of F exists, because p is positive and hence F is strictly monotonic.
The basis for the sampler is the observation, that, if r ~ unif(0, 1) is a uniformly distributed
random variable on the interval [0, 1], then F7(r) has the desired distribution v. As F™! is
monotonic and the probability density of r is equal to 1, the probability density q of F7!(r) is
given by the change of variable formula as

1= plx)

d
) = | -F)

for all x € R.
Lemma 6.1. If the probability densityfunctionp of a real random variable x is of the form

x) = — exp (—ax® — |bx — ¢
p(x) = Z p (—ax” - |bx —cl)
with a,b, Z > 0, c € R, then its cumulative distribution function F is given by
>3 Eexp(%— )erfc(%—\/ax) ifx <
———\/—exp(—+c)erfc( +\/_x) ifx >

Moreover, the normalisation factor Z is given by

1o ) oo

Proof. For x < ; we have

Flx) = [ " (bt = % [ " exp(—at? + bt — c)dt

(o)

1 © b
== [x exp(—at? — 25t c)dt

11 [n b? b
= ZE\/EGXP (E - C) erfc (ﬁ - \/EX)

by Lemma 5.51. In contrast, for x > 7 we compute, using /R p(H)dt =1,

F(x) =

e e

Fx) = / ) Pt =1-— / " exp(eat® — bt + o)t

11 [n b? b
=1- 25\/;exp (E +c) erfc (ﬁ +\/Ex)
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6 Numerical Study of the Inverse Heat Equation
Finally, again by Lemma 5.51, we have
Z= / exp (—ax2 = |bx —c|) dt
R

= /b exp(—at® + bt — c)dt + / exp(—at® — bt + c)dt

o b

/ exp(—at? — th —c)dt + / exp(—at? — ZZI — (=c))dt

b b
1 b? b b? b
= — Eexp — —c|erfc ——@ +exp|— +c|erfc —+@ ]
2V a 4a 24/a b 4a 24/a b
We can express F and Z more concisely with y = 1\/Z exp (%), Y- = %& - %, Ve =
b Na — _b
m+%andy.— 777 as

Z = xlexp(~c) exfe(y-) + exp(c) erfe(y. )]

and
Flx) = { X OPCOerfely —Van) - forx < f,
I-ZXx exp(c) erfe(y + Vax) for x > £

We further simplify this to
erfc(y — vax)

F(x) =
() erfc(y-) + exp(2c) erfe(ys)
for x < ¢ and
Flo) =1- erfe(y + Vax)

exp(—2c) erfe(y-) + erfe(ys)

for x > 7 respectively.

Now we can invert F. Because of the monotonicity of F, x < 7 holds if and only if F(x) < F(3).
Given r € [0, F(3)] we want to find an x € R with F(x) = r. We divide this task into two steps:
First we find a z € R such that

z

- erfc(y-) + exp(2c¢) erfe(yy)’

then we find an x € R such that
z = erfe(y — Vax).

The first condition leads to
z = rlerfc(y-) + exp(2c) erfe(y, )], (6.5)
and the second one results in

y — erfcinv(z)

= v
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6.4 Direct Posterior Sampling

where erfcinv denotes the inverse of the complementary error function. This way, F(x) = r
holds by construction. We proceed in the same way for r € (F(), 1]. Here, we demand

z

r=1

B d z=erf 7
exp(—2c) erfe(y_) + erfe(yy) and z = erfe(y + Vax)

which leads to
z = (1-r)[exp(—2c)erfc(y-) + erfe(yy)] (6.6)

and
_erfcinv(z) -y

. Va

We can combine this to

P = \/LE (y — erfcinv (r [erfc(y-) + exp(2c¢) erfe(ys)])) if r € [0, F($)],
()= % (erfeinv (1 - r) [exp(=2c) erfe(y-) + erfe(y,)]) —y) if r € (F(3),1].

The numerical evaluation of F~! requires additional thought. We will utilise several of the
techniques used in [Lucka 2012, Appendix B] (or [Lucka 2014, A.3]) for the implementation of
an ¢; sampler. In order to compute the arguments of erfcinv in equations (6.5) and (6.6) with
the necessary precision, we express them in terms of the scaled complementary error function
erfex(x) = exp(x?) erfc(x), which decays slower for x — +oco. We do this in such a way that
erfcx(x) is only evaluated for nonnegative values of x, since erfcx(x) increases very fast for
x — —oco. Additionally, we compute the logarithm of z instead of z in equations (6.5) and (6.6)
in order to avoid multiplying very large numbers with very small ones. Furthermore, we use an
asymptotic approximation of erfcinv(exp(w)) for w — —co.

We first compute

b 2+/ac
L=ty )y o) = — = 2c. 6.7
Vi === (s +y ) —v-) va b ¢ (6.7)
Note that y; and y_ by definition cannot both be negative, because a,b > 0, so that we only
have to consider the following three cases:
If both y. > 0 and y- > 0, then z in (6.5) is given by

z1 = rerfe(y-) + exp(2c¢) erfe(ys )]
rexp(—y?) [exp(yz) erfc(y-) + exp(yf) erfc(y+)]
rexp(—yH)w, (6.8)

with @, = erfex(y;) + erfex(y-). In (6.6), z is given by

2o = (1 —r) [exp(—2c) erfc(y-) + erfe(yy)]
=(1-r) exp(—yi) [exp(yf) erfe(y-) + exp(yf) erfc()/+)]
=(1-r) exp(_)/i)w++- (6.9)
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6 Numerical Study of the Inverse Heat Equation

In case y; > 0 and y_ < 0, we use the identity
erfex(—x) = 2 exp(x®) — erfex(x),
which follows directly from erfc(—x) = 2 — erfc(x). With
w,_ = erfex(y,) — erfex(—y_) = erfex(y,) + erfex(y-) — 2 exp(y?),
z in (6.5) is given by

z3 = rexp(—y?) [erfex(y_) + erfex(yy)]
= rexp(-y?) [wi + 2 exp(y?)]
=r [exp(—yz)apr_ + 2] , (6.10)

whereas z in (6.6) is given by

24 = (1= r) exp(—y¥) [erfex(y-) + erfex(y. )]
= (1-r)exp(-y?) [a)+_ +2 exp(yf)]
=(1-r) [exp(—yf)au,_ +2 exp(—ZC)] . (6.11)

In case y; < 0 and y_ > 0, we set
w_y = erfex(—yy) — erfex(y-) = 2 exp(y?) — erfex(y, ) — erfex(y-).
Here, z in (6.5) is given by

z5 = rexp(—y?) [erfex(y_) + erfex(yy)]
= rexp(—y2) [~w-+ + 2exp(y})]
=r [— exp(—y?)w_y + 2 exp(ZC)] , (6.12)

and z in (6.6) is given by

26 = (1 r) exp(=y3) [erfex(y-) + erfex(yy )]
= (1=r)exp(=y}) [~y + 2exp(y})]
=(1-r) [— exp(—yHw_y + 2)] . (6.13)

Now, we compute the logarithms of the above expressions. Here, we denote the natural
logarithm by log. We have

logz; = logr — y* +log @+, (6.14)
logz; =log(1—r) - y? +logw,y. (6.15)

For the remaining expressions, we use the following identity: For x > 0 and y € R\ {0} with
x+y>0,
log(x + y) = log x + log(1 + sign(y) exp(log|y| — log x)). (6.16)
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6.4 Direct Posterior Sampling

For w,_ # 0 we obtain

log z3 = log r + log[2 + exp(—y?)w,_] (6.17)
=logr +log2 + log (1 + sign(w,-) exp (loglws—| — y* —log2)),
log z4 = log(1 - r) + log[2 exp(—2c) + exp(—y?)w,_]
=log(1—r)+log2—2c
+log (1 + sign(w,—) exp (log|ws—| — y? —log2 + 2¢)),
=log(1—r)+log2—2c (6.18)
+ log (1 + sign(w,—) exp (loglws—| — y? —log2)),

using y2 — y% = 2c¢. For w_, # 0 we compute

log z5 = log r + log[2 exp(2¢) — exp(—y*)w_4 ]
=logr+log2 + 2c
+log (1 - sign(w_,) exp (loglw—+| — Y = log 2 — 2c))
=logr +log2+2c (6.19)
+log (1 - sign(w_4) exp (log|o—+| — v — log 2))
log zs = log(1 — r) + log[2 — exp(—y2)w_4]
=log(1—r)+1log2 (6.20)
+log (1 - sign(w_4) exp (loglo—+| — v —log2)).

If ;- = 0 (or w—_4 = 0), the expressions for z; and z4 (or z5 and z4) simplify considerably, so
that we do not have to use (6.16).

Finally, we can compute erfcinv(z). To this end let w = log z. If z is not too small, we can
compute z = erfcinv(exp(w)) using the standard implementation of erfcinv. For v < —680, we
use the following asymptotic approximation of z ~ erfcinv(exp(w)) for w — —oo from [DLMF,
§7.17(iii) ], which follows from [Blair, Edwards, and Johnson 1976], after modifications:

7
2

3 El
2 4+ 34382 + ays?,

[T

z:=5 2 +aps
where
0 := —log m — log(—w),
) 2
ST 2w
vi=—-0-2,
. 1
as = gv,
as = —i(vz+6v—6),
32

1
ay = — (40° + 270° + 108v — 300) .
384
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6 Numerical Study of the Inverse Heat Equation

6.5 Numerical Results

6.5.1 Laplacian Noise

First, we will plot samples of the Laplacian noise for different values of f to get an impression
of its smoothness and compute empirical confidence regions to illustrate its spread. Figure 6.1
shows samples

N
- I

k=1

of the noise for differenct values of 8, where N = 800. Here, b is chosen as (ij:l a;ﬁ)_%, SO
that the variance

N
E[Ill3n] =2 )" a”
k=1

of 7] is equal to 1. Note that only for f > 1, 7j corresponds to Laplacian noise in L?(D), because
only in this case A is trace class and hence the Laplacian measure £, s on L*(D) is covered
by our definition.

Next, we consider empirical credible regions for the noise and a range of values of . We
generate M = 10000 samples of the noise for each value of § and plot the empirical inverse
cumulative distribution of their norm ||7]|; in Figure 6.2, i.e., for every value r € [0,1] the
minimal radius of a ball in L?(D) around 0 that contains a fraction r of the samples. We can
see that although the noise has variance 1 in all cases, for smaller values of f§ the norm of the
samples is more concentrated around 1, whereas for larger values of § their norm is spread out
more into small values closer to 0 and large values greater than 1.

6.5.2 Frequentist Setting

In this subsection, we will plot MAP and CM estimator for Scenarios 1-3, juxtaposed with the
true solution, and inspect them visually. We will study how the choice of the regularisation
parameter r affects the mean squared error of both estimators and if the mean squared error
converges to zero in the small noise limit. Additionally, we will compare the spread of both
estimators around the true solution in the different scenarios by computing empirical confidence
regions around them. We will discretise with N = 180 throughout the rest of this section, unless
otherwise stated.

In Figures 6.3, 6.4 and 6.5, we take a first look at the MAP and CM estimator in Scenarios 1
to 3 for a fixed ratio between the standard deviation b(Zszl a;ﬁ )% of the noise and the norm

l¥N 2 = I7l2 of the noise-free data of ﬁ by choosing

N
b:o.oo1||y||2(za,j’) . (6.21)

k=1

In Scenario 1, we set p = supy .y |(w, @k )r2| and choose r = 1.1 - 2_%p%b% a priori, motivated by
Theorem 5.50. In Scenarios 2 and 3 we anticipate the results of the subsequent experiment and
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Figure 6.1: Samples of Laplacian noise 7 ~ ®sz1 L, -5 with N = 800.
k
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4 T
7’5=0
——B=05
| —p=065
3 —B=1
—p =13 f
p=2
2,
1L =
0 \ \ \ \
0 0.2 0.4 0.6 0.8 1

Figure 6.2: The empirical inverse cumulative distribution of ||7j||z~ for M = 10000 samples of
Laplacian noise 7 ~ ®,§:1 L,, - with N = 800.
k

choose r optimal in the sense that it minimises the sum of the mean squared errors of MAP and
CM estimator. Visually, both estimators appear very smooth, in particular smoother than the
true solution u" € X7 from Scenario 2.

Next, we consider the mean squared error (MSE)
E (-l = [ 1600 =0 Lo peacn(@)
L%(D)

of both estimators for different values of r, with b chosen according to (6.21) as before. Here @
stands for dypap or dcm, respectively. We approximate the MSE of the respective estimator by
its empirical mean squared error

1 M 2, a ~F112
lenu(ym)_u ||RN
m=

for M = 100 realisations of the data J,, = Kii' + fj,, determined by M samples i, . . ., fjy of the
noise. In Figures 6.6, 6.7 and 6.8 we plot the empirical MSE of both estimators against r.

In Scenarios 1a and 1b we observe that the MSE of the MAP estimator decreases monotonically
as r decreases up to the lower bound r := 271 p% b from Theorem 5.50, where the MSE changes
its behaviour abruptly and increases very rapidly. The MSE of the CM estimator displays roughly
the same behaviour as the MAP estimator, it decreases monotonically as r decreases up to a
point slightly above ry and then increases rapidly. In contrast to the MAP estimator, there is no
abrupt change in its behaviour but a smooth transition. For the MAP estimator this suggests
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B =0.65 =13

7PNuT
20 — tmar(yN)
— dem(y

M)

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 6.3: Scenarios 1a (left) and 1b (right) with r = 1.1 - 271 p%b% chosen a priori.

B =0.65
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8 i 7PNUT i
— dmar(¥Y)
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Figure 6.4: Scenarios 2a with r = 0.0477 (left) and 2b with r = 0.0731 (right).
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B =0.65 =13
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Figure 6.5: Scenarios 3a with r = 0.1096 (left) and 3b with r = 0.1313 (right).
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Figure 6.6: Mean squared error for different values of r for Scenarios 1a (left) and 1b (right) and

the lower bound 2_%/)%19% for r from Theorem 5.50.
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Figure 6.7: Mean squared error for different values of r for Scenarios 2a (left) and 2b (right).
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Figure 6.8: Mean squared error for different values of r for Scenarios 3a (left) and 3b (right).
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6 Numerical Study of the Inverse Heat Equation

choosing r as small as possible, but larger than ry. Motivated by this, we will use the a priori
choice

I
[T

r:1.1-2_%p b

in the following for Scenario 1.

In Scenarios 2 and 3 the mean squared errors of both estimators decrease monotonically as
r decreases up to a certain point and then increase monotonically. In contrast to Scenario 1,
there is a flat valley around the value of r that minimises the MSE, while for small » the MSE
again grows very rapidly. In Scenarios 2a, 3a and 3b the MSE of both estimators transitions
smoothly and so does the MSE of the CM estimator in Scenario 2b. The MAP estimator in
Scenario 2b poses an exception. Here the MSE changes its behaviour abruptly at a small value
of r. In contrast to Scenario 1 this sudden change does not occur in the value of r that minimises
the MSE but outside of the valley around it.

In Figures 6.9 and 6.10 we study the frequentist consistency of both estimators numerically
by considering the MSE and the variance of the squared error (VSE)

SR P TP .2 1)
var (|l - u'|l%.) = E [(nu—u 12, — E [z - "I ]) ]

for values of b ranging roughly from 0.1 to 1.0 - 107'°. Here, we use M = 1000 noise samples to
approximate MSE and VSE.

B =0.65

MSE

| | | 10_11 |

1071 !

| |
100 1077 10° 1073 107 1077 1077 100 1073 107!

b b

—— MAP Scen. 1---- MAP Scen. 2 MAP Scen.3—b
——CM Scen.1 ----CM Scen. 2 CM Scen.3 —— 2C(TrA™")b

Figure 6.9: The mean squared error of both estimators for different values of b.
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102 ‘ : 102
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Figure 6.10: The variance of the squared error of both estimators for different values of b.

We observe, that in Scenarios 1a and 1b the mean squared error of both estimators converges to
0 as b tends to 0. The MAP estimator converges in the order of b, the rate estimated in Theorem
5.50. The CM estimator behaves, up to a constant, in the same way and also converges in the
order of b. The MSE of the MAP estimator remains below the upper bound 2C(Tr A™%)b from
Theorem 5.50. The actual MSE is smaller than the bound by a factor between 12.2 (b ~ 0.1) and
298 (b ~ 1.0 - 1071%). In Scenarios 2 and 3 the MSE of neither MAP nor CM estimator converges
to 0. It only decreases down to around 0.043 (b ~ 5.4 - 10~%) in Scenarios 2a and 2b and down
to around 0.25 (b ~ 5.4 - 107*) in Scenarios 3a and 3b. Then it remains practically constant for
smaller values of b. In all considered scenarios the VSE of both estimators converges to 0 in the
order of b%.

Finally, we determine empirical confidence regions for the true solution @'. In particular,
we consider balls in RN around the MAP or CM estimate as confidence sets. We generate
M = 10000 realisations of the data = Kii' + #, which in turn are determined by M samples
of the noise 7. For every value p € [0, 1] we seek the minimal radius, such that for a fraction
p of the samples a ball around the respective estimate i(7) with the same radius includes the
true solution #'. This is equivalent to choosing for every p € [0, 1] the minimal radius of a ball
around ' that contains a fraction p of the respective estimates, or, in other words, finding the
empirical inverse cumulative distribution of the error ||ﬁ()7) — i ||, of the respective estimates.
In order to make the confidence sets from the different Scenarios quantitatively comparable,
we normalise the true solution @' in each scenario to satisfy ||ii"||; = 1. Moreover, we choose

b such that the standard deviation b(ZkN:1 a;ﬁ )% of the noise is equal to 107. The results are
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plotted in Figure 6.11.

In Scenarios 2 and 3 there is a ball around u" with radius 0.055 and 0.25, respectively, that
contains none of the samples of the estimates, whereas virtually all samples are contained
in a ball with a slightly larger radius of 0.07 and 0.3, respectively, suggesting that in these
Scenarios for both estimators the bias is predominant and the effect of the variance is much
smaller. Only in Scenario 1 the samples are spread out more smoothly and the effect of the bias
is smaller in comparison. Here, the difference between a 0.05- and a 0.95-confidence region is
more pronounced, while there still exists a ball with radius 0.002 around u' that contains none
of the samples.

6.5.3 Fully Bayesian Setting

Now, we consider CM and MAP estimator in a fully Bayesian setting. We will plot a number
of samples of the posterior for different values of 7 to visually inspect their smoothness and
their spread and compare them to both estimators. Moreover, we will compare the spread of the
posterior for different values of 7 and 8 by computing empirical credible sets around MAP and
CM estimator.

As before, we draw the noise 7 from a Laplacian distribution

N
® '[’bzalzﬁ ’
k=1

where b is chosen in such a way, that its standard deviation b(ZkN=1 a;ﬂ )% is equal to 107>, The
discretised prior 7 by definition has the distribution N,24-- o y5/', the pushforward of the prior
distribution N,24-- under yn. And as y'(A) = I, n;a is a cylindrical set for every A € B(RN),
this measure is by definition a Gaussian product measure on RN e,

.....

N
-1 _
Nyogroyy = ® era;r.
k=1

L. . o N .
We thus draw the prior # from a Gaussian distribution (X),_, N, P where r is chosen such

that its standard deviation r(zgzl alzf)% is equal to 1. Then we set y := Ku + 7§ and study the
marginal posterior distribution p'.
We take a first look at M = 8 samples of the posterior tipost := |y ~ p™¥ for

t € {0.55,1.55, 2.55}

and f = 0.65. Here we choose N = 1000. In Figure 6.12 we plot the corresponding functions

N

Upost,m = Z(ﬁpost)kfpk form=1,...,M.
k=1

The posterior samples resemble the prior sample in smoothness and distance to MAP and CM
estimate. For all values of 7 both estimates appear to be significantly smoother than the posterior
samples.
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Figure 6.11: The empirical inverse cumulative distribution of ||L:l()~/) — @' ||gn for M = 10000
samples.
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7 =0.55

0 01 02 03 04 05 06 07 08 0.9 1

Figure 6.12: M = 8 samples — of the posterior, the sample — of the prior underlying the
data, the MAP estimate — and the CM estimate —— for different values of 7.
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In Figure 6.13 we consider the convergence of the empirical posterior mean

M
2 1 .
Ucm,Mm = M Z Upost,m

m=1

of M samples of the posterior tipos ~ uN towards the exact posterior mean, the CM estimate
ticm(y). Here we choose 7 = 2.55 and f§ = 0.65. We observe that the error ||dcym, m — temllz

T T T T T T T T T T T T T T

102 —— Error |

—O0(/VM) | |

1073 ¢ 5

1074 ¢ 5
107 F

L Lol Ll | Ll Lol \\\\\\\7

10° 10! 10 10° 10* 10° 10°

M

Figure 6.13: Error “L:tCM’ v —ticm|lgy of the empirical posterior mean using M samples compared
to the exact posterior mean.

converges to 0 in the order of 1/V/M as M tends to infinity.

Finally, we consider empirical credible regions of the posterior around the MAP and the CM
estimate. We generate M = 100000 samples of the posterior o5t ~ ¥ and plot the empirical
inverse cumulative distribution of their distance ||épost — ﬁ(j})”g to the MAP or the CM estimate,
respectively, in Figure 6.14. For every value r € [0, 1] this is the minimal radius of a ball in
R™ around ﬁ(j/) that contains a fraction r of the samples. Consequently, these balls can be
considered as an approximation of credible regions for the marginal posterior @, i.€., sets
that contain i,,s With a probability greater than or equal to r.

We do this for different values of 7 and . We consider a rougher prior with 7 = 0.55
(Scenario 4) and a smoother one with © = 2.55 (Scenario 5). Again, we divide each scenario into
two subscenarios, one with f = 0.65, labeled a, and one with f = 1.3, labeled b. Scenario 5
corresponds to a prior u which belongs to X! almost surely for every ¢ € [0, 2.05), whereas for
the prior corresponding to Scenario 4 this is the case only for ¢ € [0, 0.05).

We observe that the smoother noise in Scenarios 4b and 5b leads to a slightly more con-
centrated posterior than the rougher noise in Scenarios 4a and 5a. The effect of a smoother
prior, on the other hand, is tremendous; the posterior is much more concentrated than for a
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Scenario 4
1.5 I \ T
—— MAP Scen. 4a
—— CM Scen. 4a
----MAP Scen. 4b
1 CM Scen. 4b

O | |

0 0.2 0.4

0.6

0.8

1

0.8

102 Scenario 5

—— MAP Scen. 5a
—— CM Scen. 5a

----MAP Scen. 5b
----CM Scen. 5b

Figure 6.14: The empirical inverse cumulative distribution of ||épost — ﬁ(j})ll gy for M =100000

samples of the posterior #pst.

rougher prior. In Scenario 5 the posterior belongs to a ball with radius 5.06 - 107 around the
MAP or the CM estimate with a probability of 0.95, compared to a ball with radius 0.639 in
Scenario 4, although in both Scenarios the variance of the prior is the same. This also becomes
apparent when we consider the empirical standard deviation of the posterior; in Scenario 5a it
is approximately 3.39 - 1073, compared to 0.571 in Scenario 4a.
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The equivalence of Laplacian infinite product measures under translations was studied. A Lapla-
cian measure has the same admissible shifts as a Gaussian measure with the same covariance
operator. Apart from that, the density of a shifted measure relative to a centred one displays
similarities to the weighted ¢!-norm.

For nonlinear inverse problems, Tikhonov—Phillips regularisation with a quadratic norm
penalty is equivalent to Bayesian MAP estimation with a Gaussian prior if the log-likelihood is
Lipschitz continuous and chosen as a discrepancy term. This holds even if the log-likelihood is
unbounded and thereby extends the main result from [Dashti, Law, et al. 2013].

This variational characterisation of MAP estimates was used to study consistency of the MAP
estimator for a severely ill-posed linear problem with data corrupted by additive Laplacian noise.
In this case, the posterior distribution has a density with respect to the prior distribution and the
log-posterior density coincides with the weighted ¢!-norm up to a constant on finite subspaces.
This yields a rigorous probability theoretical interpretation of variational regularisation with an
{*-discrepancy term: The regularised solution can be understood as the mode of the posterior
distribution. In a frequentist setting, the MAP estimator is asymptotically unbiased in the small
noise limit if an a priori rule is employed to choose the regularisation parameter. Under an
analytic source condition, the bias converges to zero at least in the order of the noise level, even
if the regularisation parameter is chosen to be constant. The mean squared error of the MAP
estimator converges towards the true solution at least in the order of the noise level if an analytic
source condition holds and an a priori parameter choice rule is used. For an exponentially ill-
posed linear problem, this rate coincides with the optimal asymptotic convergence rate in a
minimax sense under the presence of Gaussian noise.

The behaviour and consistency of MAP and CM estimator were studied numerically for
the classical inverse heat equation in one dimension with additive Laplacian noise. The lower
bound from the a priori parameter choice rule was observed to be sharp, insofar as choosing the
parameter below this bound results in a dramatic increase of the MSE. In a frequentist setting,
the empirical MSE of both MAP and CM estimator converges to zero in the order of the noise
level if an analytic source condition is satisfied. This means that here, the upper bound for the
convergence rate of the MAP estimator is attained. In contrast, neither MAP nor CM estimator
converge towards the true solution in mean square if only a Sobolev-type source condition is
satisfied.

Future research could pursue the question if a rigorous statistical interpretation of minimisers
of a Tikhonov-Phillips functional with an L'-discrepancy term as Bayesian MAP estimates is
possible, and if so, on which noise model it is based. More generally, it could be investigated if
MAP estimates can be characterised as minimisers of an Onsager—Machlup functional when
other heavy-tailed infinite-dimensional non-Gaussian noise models are utilised. The study of
the considered linear problem could be continued by examining the posterior contraction rate
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in a frequentist setting or the consistency of the MAP estimator in a fully Bayesian setting. Also,
sublevel sets of the Onsager—-Machlup functional could be used as credible regions that capture
the structure of the posterior distribution. Furthermore, one could examine if the MAP estimator
minimises a cost functional involving the Bregman distance, i.e., if it is a Bayes estimator, for
linear inverse problems with Laplacian infinite product noise, as it is the case for Gaussian noise
in a finite-dimensional setting [Burger and Lucka 2014].
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