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Abstract

The focus of this work are Bayesian inverse problems in an in�nite-dimensional setting with
Gaussian prior and data corrupted by additive Laplacian noise. In particular, the connection
between Tikhonov–Phillips regularisation with an `1-discrepancy term and Bayesian MAP
estimation based upon a Laplacian noise model is investigated for linear problems as well as
the consistency of MAP and CM estimator.

For Laplacian in�nite product measures on a separable Hilbert space, a result similar to the
Cameron–Martin theorem for Gaussian measures is shown, stating the space of admissible
shifts and the relative density of shifted Laplacian measures.

Under certain conditions on the log-likelihood, MAP estimates in separable Hilbert spaces are
characterised as minimisers of the Onsager–Machlup functional of the posterior distribution,
which in this case has the form of a Tikhonov–Phillips functional with a discrepancy term given
by the log-likehood and a squared norm penalty term.

The behaviour of MAP and CM estimator is studied for a severely ill-posed linear problem; a
generalised form of the inverse heat equation, under the presence of additive Laplacian noise.
The posterior distribution is derived via Bayesian inference and both MAP and CM estimator are
computed explicitly. The MAP estimator is shown to be asymptotically unbiased in a frequentist
setting. An estimate for the convergence rate of the bias is stated under an analytic source
condition. Moreover, an estimate for the convergence rate of the mean squared error of the
MAP estimator is proved under an analytic source condition and in conjunction with an a priori
parameter choice. This rate is then compared to the minimax rate in the fully Gaussian case.

The behaviour and consistency of MAP and CM estimator is studied numerically for the
classical inverse heat equation in one dimension with additive Laplacian noise. The empirical
MSE of both estimators is observed to converge to zero in the small noise limit with the estimated
rate if an analytic source condition is satis�ed, whereas neither MAP nor CM estimator converge
towards the true solution in mean square if only a Sobolev-type source condition is satis�ed.
Moreover, empirical con�dence regions around both estimators are computed. Finally, a direct
sampler for the posterior distribution is developed and used to compute credible regions around
both estimators.
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Introduction

The objective of an inverse problem, in general, is reconstructing an unknown quantity of
interest from indirect measurements which are connected to the sought-after quantity by a
mathematical model. This might be necessary, for example, because the unknown quantity itself
cannot be measured directly. Both unknown and measured quantities are typically functions in
a certain function space and as such in�nite-dimensional. The model can usually be expressed
as an operator equation

y = F (u) (1)
with a linear or nonlinear mapping F between two Banach spaces describing the relation
between the unknown quantity u and the measured quantity y . Now, predicting the measured
data y for a given value of u is called the direct problem. Contrary to this is the inverse problem,
which consists in �nding the unknown u for given data y .

The term inverse problem usually refers to ill-posed inverse problems. According to Hadamard,
a problem is called well-posed if the following three conditions hold.

(H1) A solution exists.

(H2) The solution is unique.

(H3) The solution depends continuously on the data.

If, on the other hand, one of these conditions is violated, the problem is called ill-posed.
An inverse problem may be ill-posed for several reasons: The solution might not be unique

because the setup of the experiment limits the amount of information that can be obtained
about the unknown quantity. Even if a unique solution exists for attainable data y , i.e., data in
the range of the forward mapping F , there might not exist a solution for arbitrary noisy data.
Or, most importantly, the forward mapping F might not be continuously invertible. A direct
problem can be well-posed, even if the inverse problem is ill-posed. This is, for instance, the case
for operator equations involving a compact linear forward operator F with in�nite-dimensional
range.

Model (1) is still highly idealised as it does not take measurement errors into account. A more
realistic model

y = F (u) + η
is obtained by incorporating additive noise η present in the measurements. Classically, the noise
is assumed to be a deterministic quantity whose norm is strictly bounded by the noise level
δ > 0, i.e.,

‖y − F (u)‖Y = ‖η‖Y ≤ δ ,
but it can also be modelled as a stochastic quantity, that is as a random variable with a known
probability distribution.

ix



Introduction

Often, the distribution of the noise can reasonably be assumed to be Gaussian. There are,
however, cases where it is natural to assume a non-Gaussian noise distribution, for instance,
inverse problems with impulsive noise such as salt-and-pepper noise or random valued impulsive
noise, which arise in many applications in image and signal processing, see [Bovik 2005], e.g.,
image acquisition with faulty pixels in a sensor or faulty memory locations. Such impulsive
noise functions (or vectors, respectively) take very large values on a small part of their domain,
while being small or identical to zero elsewhere.

While the assignment of the terms direct and inverse problem can be considered somewhat
arbitrary, it is the ill-posedness of a problem that makes solving it ad hoc in a stable way
impossible. This is overcome by, instead of trying to compute the true solution, computing a
regularised solution that is close to the true solution and depends continuously on the data. The
nonexistent or discontinuous inverse F−1 of the forward mapping is approximated by a family
{Rα }α>0 of continuous mappings, called a regularisation, that converges pointwise towards F−1.
This means that for each value of α the regularised solution uα := Rα (y) depends continuously
on the data y and for each value of the unknown u the regularised solution uα = Rα (F (u)) for
noise free data converges to u as α tends to zero. One of the advantages of modelling not only
the problem but also the regularisation method on in�nite-dimensional spaces is that desirable
properties such as convergence and stability can be established inpependent of the chosen
discretisation.

The choice of the regularisation parameter α plays a central role in obtaining a good recon-
struction. On the one hand, it should be chosen small enough, so that F−1 is approximated
well enough. On the other hand, choosing it too small results in an increased error due to the
discontinuity of F−1. If α is chosen only depending on the noise level we speak of an a priori
parameter choice rule, whereas we speak of an a posteriori parameter choice rule if both the noise
level and the measured data is taken into account.

A widely used class of regularisation methods is variational regularisation, where the regu-
larised solution uα is given as the solution of an optimisation problem

min
u
{Φ(u,y) + αR(u)}

with a discrepancy term (or data �tting term) Φ(u,y) and a penalty term (or regularisation term)
αR(u). The most prominent example of such a regularisation method is Tikhonov–Phillips
regularisation, where the objective functional has the form

u 7→ ‖y − F (u)‖qY + α ‖u‖
p
X .

For inverse problems with impulsive noise, Tikhonov–Phillips regularisation with an L1-data
�tting term has been observed to provide better estimates than L2-data �tting [Kärkkäinen,
Kunisch, and Majava 2005; Clason, Jin, and Kunisch 2010], due to its higher robustness towards
outliers. This remarkable di�erence in performance has been studied further in [Hohage and
Werner 2014; König, Werner, and Hohage 2016] within a deterministic framework in case of
�nitely and in�nitely smoothing forward operators, resulting in improved convergence rate
estimates. Here, an impulsive noise function may be arbitrarily large on a small part of its
domain, while being small in L1-norm on the rest of its domain.
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The objective of statistical inference is to estimate certain quantities of interest which are
unknown or unobservable, called the parameter, given measurements of observable quantities
(the data) that are linked to the unknown quantities by a model. For any �xed value of the
parameter the data is assumed to be a random variable with a probability distribution speci�ed
by the model. Classical statistical inference takes a frequentist point of view, insofar as the
parameter is assumed to be a deterministic quantity. If the parameter is in�nite-dimensional,
the setting is commonly called nonparametric. Inverse problems with stochastic noise fall in
this framework. Here, the model is derived from the operator equation describing the relation
between unknown, noise and data and the distribution of the noise.

Consider a basic denoising problem with direct measurements y = u + η of an unknown
image u corrupted by noise η. First, assume that observation and parameter are scalar, e.g., the
value of a single pixel of the image. Given multiple measurements y1, . . . ,yn of the observable
quantity, an estimate û for the parameter can be de�ned to minimise a certain measure of scatter
for the available samples. Such estimators are called maximum likelihood estimators. Classical
choices for the objective functional are the root mean square deviation

sn(u) =
(

1
n

n∑
i=1
(yi − u)2

) 1/2

or the mean absolute deviation

dn(u) = 1
n

n∑
i=1
|yi − u |.

For the former choice, û is the mean of the samples, for the latter one, û is their median. If
the errors present in the observations are identically distributed and Gaussian, an estimate
minimising sn has a higher asymptotic e�ciency as the number of samples n tends to in�nity,
whereas one minimising dn is asymptotically more e�cient if even a small percentage of the
samples is known to be outliers that have, e.g., a higher variance, see Example 1.1 in [Huber
2009].

The whole original image u can be modelled as a function on a bounded set D ⊂ R2, inde-
pendent of the resolution or the layout of a speci�c sensor. Assume that a single measurement
is taken (i.e., the sample size n is equal to 1) and that the value measured in every point x ∈ D is
independently a�icted by impulsive noise. The previous considerations suggest estimating the
original image u by minimising

‖y − u‖L1 =

∫
D
|y(x) − u(x)|dx .

The approach of regression analysis is to do this under the assumption that u lies in a certain
set of functions. A speci�c sensor can be modelled by assuming that the image is observed in
m points x1, . . . , xm ∈ D. In this case, estimating the original image u by minimising the mean
absolute deviation

1
m

m∑
k=1
|y(xk ) − u(xk )|

xi



Introduction

can be motivated in the same way. This approach is called method of least absolute deviations.
In order to obtain reasonable estimates, the function u is typically assumed to be of a particular
form and determined by a small number of parameters. Introducing positive weights wk and
minimising

∞∑
k=1

wk |y(xk ) − u(xk )|

can now be considered as the limit case, in which the number of pointsm tends to in�nity.
In the context of statistical inference, the regularised solution can also be considered as an

estimator for the sought-after quantity and its statistical properties can be studied, e.g., if it
converges towards the true parameter in probability (consistency) and at which rate.

In the Bayesian approach to statistical inference, in contrast, the parameters are also treated
as random variables. A probability distribution, called the prior distribution, is assigned to all
relevant unknown quantities, formalising any assumptions about their distribution without (or
before) taking the data into account. Here, the model links parameters and data by specifying
the conditional distribution of the observed, given the unknown quantities. In our context,
the density of the conditional distribution of the data, given the parameter, with respect to
a reference measure is called likelihood. The objective of Bayesian inference is to then �nd
the posterior distribution: the conditional distribution of the parameter given the data. Infering
the posterior distribution from model and prior distribution involves changing the order of
conditioning, which is achieved by some form of Bayes’ formula.

For linear inverse problems with a Gaussian prior distribution and additive Gaussian noise
the posterior distribution is again a Gaussian measure. The posterior contraction rate, which
describes the concentration rate of the posterior distribution around a point in the small
noise limit, has been studied in this setting under the frequentist assumption that a �xed
data-generating value of the unknown exists [Agapiou and Mathé 2018].

On �nite-dimensional spaces, maximum a posteriori (MAP) estimates are de�ned as modes
of the posterior distribution. If a probability measure has a continuous density with respect
to the Lebesgue measure, then its modes are de�ned as maximisers of this density. This way,
variational regularisation with a continuous objective functional can be interpreted as maximum
a posteriori estimation, where the spread of the prior plays the role of the regularisation
parameter. This yields an analytic justi�cation for the choice of the objective functional by
Bayesian modelling and statistical inference based upon few and explicit assumptions about
prior and noise distribution. The above de�nition of modes is, however, limited to measures
on �nite-dimensional spaces, since there exists no Lebesgue measure on in�nite-dimensional
spaces.

Another frequently used Bayesian estimator is the conditional mean (CM) estimator; it is
de�ned as the mean of the posterior distribution. For linear inverse problems with a Gaussian
prior distribution and additive Gaussian noise the posterior distribution is again a Gaussian
measure, so that its mode and its mean, and hence also MAP and CM estimator, coincide and can
be stated explicitly. In contrast, MAP and CM estimator can be distinct in case of non-Gaussian
noise.

The consistency and convergence rate of the MAP estimator based upon a Gaussian prior has
been investigated both in a Bayesian and in a frequentist framework for linear inverse problems

xii



with additive white Gaussian noise [Kekkonen, Lassas, and Siltanen 2016; Burger, Helin, and
Kekkonen 2018].

On in�nite-dimensional spaces, the posterior distribution does not have a canonical density
due to the lack of a Lebesgue measure. Here, both maximum a posteriori estimates and modes
are commonly de�ned via the limit of small ball probabilities, see [Dashti, Law, et al. 2013].
This approach can be generalised using bounded, convex, and open sets instead of balls, see
[Lie and Sullivan 2018]. It is, in general, an open question if nonparametric MAP estimates are
given as solutions of a canonical optimisation problem. The Onsager–Machlup functional of
the posterior distribution, which is also de�ned via the limit of small ball probabilites, can be
considered as its generalised negative logarithmic density. As such, it is a natural candidate for
use as an objective functional. Under certain conditions on the likelihood, MAP estimates for
nonlinear inverse problems with a Gaussian prior have been shown to coincide with minimisers
of the Onsager–Machlup functional of the posterior distribution [Dashti, Law, et al. 2013], which
in this case has the form of a Tikhonov–Phillips functional with a discrepancy term given by
the negative log-likelihood and a squared norm penalty term. These conditions are, for example,
satis�ed for linear problems with additive Gaussian noise and �nite-dimensional data. A similar
variational characterisation of MAP estimates has been shown to hold true for nonlinear inverse
problems with a Bs1 -Besov prior [Agapiou, Burger, et al. 2018], involving a Besov norm penalty
term. This is of particular interest, because the Bs1 -Besov norm can be considered as a weighted
`1-norm. If, on the other hand, the posterior distribution is discontinuous in a certain sense, e.g.,
if it is not quasi-invariant along any direction, the Onsager–Machlup functional is not de�ned
and minimisers of a canonical Tikhonov–Phillips functional are, in general, no MAP estimates
but only generalised MAP estimates [Clason, Helin, et al. 2019].

In the context of these results, the question arises if a similar variational characterisaton
of nonparametric MAP estimates is possible in case of non-Gaussian noise. In particular, we
are interested in the question if a statistical interpretation of Tikhonov–Phillips regularisation
with an `1-discrepancy term as a Bayesian MAP estimator is possible and on which exact noise
model it is based. A promising candidate for a noise model that might lead to such an estimator
is Laplacian in�nite product noise. In order to connect its MAP estimates to an optimisation
problem we show that a variational characterisation of MAP estimates based upon a Gaussian
prior is possible for a general class of models. Moreover, we investigate the behaviour and
statistical properties of such a MAP estimator for a speci�c problem both analytically and
numerically, and examine if the CM estimator behaves fundamentally di�erent. To this end,
we consider a severly ill-posed linear inverse problem with additive Laplacian noise. Here, we
obtain an objective functional with a discrepancy term that coincides with the weighted `1-norm
up to a constant on �nite-dimensional subspaces.

This thesis is structured as follows: In Chapter 1, we discuss fundamental notions necessary to
conduct nonparametric Bayesian inference, such as conditional probabilities and regular condi-
tional distributions, introduce Bayes’ formula and portray how inverse problems with stochastic
noise �t into this framework. In Chapter 2, we review the de�nition of Gaussian measures on
separable Hilbert spaces and their representation as an in�nite product measure. Furthermore,
we present the Cameron–Martin theorem, which gives a criterion for the equivalence of shifted
Gaussian measures and states their relative density.
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Introduction

In Chapter 3, we construct Laplacian in�nite product measures on separable Hilbert spaces
based upon the Laplace distribution onR. We then determine the directions in which translations
of a Laplacian measure lead to an equivalent measure and state the density of shifted Laplacian
measures with respect to centred ones.

In Chapter 4, we characterise MAP estimates for nonlinear Bayesian inverse problems with
Gaussian prior distribution under certain assumptions on the log-likelihood as minimisers of
the Onsager–Machlup functional of the posterior distribution, which in this case has the form
of a Tikhonov–Phillips functional with a squared norm penalty term and a discrepancy term
given by the negative log-likelihood.

In Chapter 5, we consider a severely ill-posed linear problem and explain how it can be
understood as a generalisation of the inverse heat equation. We infer the posterior distribution
in case of a Gaussian prior and additive Laplacian noise. Then, we express the MAP estimator
in analytic form using its variational characterisation and study its behaviour in a frequentist
setting: We show that it is asymptotically unbiased in conjunction with an a priori parameter
choice rule and estimate the convergence rate of the bias under a source condition. Moreover,
we estimate the convergence rate of its mean squared error under a source condition using an a
priori parameter choice, and compare this rate with the minimax rate for Gaussian noise. Here,
we also express the CM estimator in analytic form.

In Chapter 6, we study the behaviour of MAP and CM estimator numerically for the inverse
heat equation in one dimension under the presence of Laplacian measurement noise. We assess
the spread of Laplacian noise depending on its smoothness by considering empirical credible
regions. We examine how the degree of smoothness of the noise and the prior a�ects the ability
of both estimators to reconstruct the unknown. In a frequentist setting, we study the e�ect of
the regularisation parameter on the mean squared error of MAP and CM estimator as well as
the consistency and convergence rate of both estimators in terms of the mean squared error.
Moreover, we consider empirical con�dence regions for the true solution around both estimators
for di�erent values of the regularisation parameter. Eventually, we evaluate the spread of the
posterior distribution depending on the prior variance in a Bayesian setting by computing
empirical credible regions using a direct posterior sampler.
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1 Nonparametric Bayesian Inference

In this chapter we review the de�nition of conditional probabilities and provide a proof of Bayes’
formula in the required generality. For a broader introduction into nonparametric Bayesian
inference we refer, e.g., to [Ghosal and van der Vaart 2017, Chapter 1].

1.1 Fundamental Notions

First we recapitulate some basic de�nitions. Let X be a set and let P(X ) denote its power set. A
set X ⊆ P(X ) is called σ -algebra (or σ -�eld) if

(i) � ∈ X,

(ii) X \A ∈ X for every A ∈ X, and

(iii)
⋃

n∈NAn ∈ X for every countable subset {An}n∈N ⊂ X.

Let E ⊆ P(X ). Then the smallest σ -algebra σ (E)with E ⊆ σ (E) is called the σ -algebra generated
by E. If X is a topological space, then the σ -algebra B(X ) generated by the open sets in X is
called Borel σ -algebra on X . A pair (X ,X) of a set X and a σ -algebra X is called measureable
space. A function µ: X → [0,∞] is called measure on (X ,X) if

(i) µ(�) = 0, and

(ii) for every countable subset {An}n∈N ⊂ X of pairwise disjoint sets,

µ

( ⋃
n∈N

An

)
=

∞∑
n=1

µ(An).

A measure µ on (X ,X) that satis�es µ(X ) = 1 is called probability measure and the triple (X ,X, µ)
probability space.

Let X be a σ -algebra on a set X and let µ and ν be two measures on (X ,X). Then µ is called
absolutely continuous with respect to ν (µ � ν ) if for every A ∈ X, ν (A) = 0 implies µ(A) = 0. If
µ � ν then by the Radon–Nikodym theorem there exists ρ ∈ L1(X ,X,ν ), called density of µ
with respect to ν , such that

µ(A) =
∫
A
ρ dν for all A ∈ X.

If µ � ν and ν � µ then we say that µ and ν are equivalent. If, on the other hand, there is an
A ∈ X such that µ(A) = 0 and ν (X \A) = 0, then µ and ν are called singular.

1



1 Nonparametric Bayesian Inference

A function f : X → Y between two measurable spaces (X ,X) and (Y ,Y) is called measurable
if f −1(A) ∈ X for every A ∈ Y. A measureable function u: X → Y between a probability space
(X ,X, µ) and a measurable space (Y ,Y), in turn, is called random variable with values in Y . In
this case, the probability measure µ ◦ u−1 is called distribution of u. For A ∈ Y, we denote the
probability of {u ∈ A} := u−1(A) by

P [u ∈ A] := µ(u−1(A)).

If a random variable u is Bochner integrable (with respect to µ), then

E [u] :=
∫
X
u(x)µ(dx)

is called mean, expected value or expectation of u.

1.2 Regular Conditional Distributions

Consider a pair of random variables (u,y) with values in the measurable space (X × Y ,X × Y).
In the context of Bayesian inference, we will denote the parameter by u and the data by y . For
events A ∈ Y and B ∈ X with P [y ∈ A] > 0 the conditional probability is de�ned as

P [u ∈ B |y ∈ A] = P [u ∈ B,y ∈ A]
P [y ∈ A] .

However, we want to de�ne conditional probabilities of the form P [u ∈ B |y = y0] for all y0 ∈ Y ,
that is to say we want to be able to condition on events with probability zero. We will do so in a
consistent way by means of regular conditional distributions.

For a �xed B ∈ X the conditional probability of {u ∈ B} given y is de�ned as the random
variable д(y) and denoted by P [u ∈ B |y], where д: Y → R is a measurable function such that

E [д(y)1A(y)] = E [1B(u)1A(y)] for every A ∈ Y. (1.1)

The existence of such a function can be shown using the Radon–Nikodym theorem as follows.
First note that A 7→ E [1B(u)1A(y)] = P [u ∈ B,y ∈ A] de�nes a �nite measure on (Y ,Y). This
measure is absolutely continuous with respect to the marginal distribution of y , as P [y ∈ A] = 0
implies P [u ∈ B,y ∈ A] = 0. Thus it has a density д with respect to the marginal distribution of
y by the Radon–Nikodym theorem [Klenke 2014, Cor. 7.34], which means that (1.1) is satis�ed.
The function д is unique up to changes on a null set under the marginal distribution of y , as
д(y) = д̃(y) almost surely whenever E [д(y)1A(y)] = E [д̃(y)1A(y)] for all A ∈ Y. This null set
does, however, depend on B.

In order to de�ne a conditional distribution from these conditional probabilities in a consistent
way we need additional requirements. A map G: Y × X → [0,∞) is called Markov kernel (or
stochastic kernel) from (Y ,Y) to (X ,X) if

(i) for any B ∈ X the map y0 7→ G(y0,B) is Y-measurable, and

(ii) for any y0 ∈ Y the map B 7→ G(y0,B) is a probability measure on (X ,X).
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1.3 Bayes’ Formula

Now, G: Y × X → [0,∞) is called regular conditional distribution of u given y , if it is a Markov
kernel from (Y ,Y) to (X ,X) and for every B ∈ X we have

G(y,B) = P [u ∈ B |y] almost surely,

i.e., if
E [G(y,B)1A(y)] = E [1B(u)1A(y)] for all B ∈ X and all A ∈ Y.

In this case we de�ne the conditional probability of {u ∈ B} given y = y0 as P [u ∈ B |y = y0] :=
G(y0,B).

A su�cient condition for the existence of a regular conditional distribution is that X is a
Polish space and X its Borel-σ -algebra, see [Klenke 2014, Thm. 8.37]. It is in particular satis�ed
if X is a separable Banach space equipped with its Borel-σ -algebra. Note that in spite of its
name the regular conditional distribution is not actually a probability distribution, but a family
{G(y0, ·)}y0∈Y of probability distributions.

Conditional probabilites can be de�ned in more generality, conditioning on an arbitrary
σ -algebra instead of a random variable, see [Klenke 2014, Sections 8.2 and 8.3]. This is, however,
not necessary for our purposes.

1.3 Bayes’ Formula

Since there exists no Lebesgue-measure on in�nite-dimensional separable Banach spaces, we
will state the density of the posterior distribution with respect to the prior distribution.

Proposition 1.1. On an in�nite-dimensional, separable Banach space there exists no locally �nite,
translation-invariant Borel measure, except for the trivial measure.

Proof. Let µ be a locally �nite, translation-invariant measure on an in�nite-dimensional, sepa-
rable Banach space (X ,B(X )). Local �niteness assures that for some δ > 0 the open ball Bδ (0)
has �nite µ-measure. Since X is in�nite-dimensional, we can, using Riesz’s lemma, construct a
sequence {xn}n∈N of points in X such that ‖xn ‖ = 1 for all n ∈ N and

‖xn − x ‖ ≥ 2
3 for all x ∈ span{x1, . . . , xn−1}.

Consequently, the balls {Bδ/4( 34xn)}n∈N are all contained in Bδ (0) and pairwise disjoint. By
translation-invariance, all these balls have the same measure, and since

∞∑
n=1

µ

(
B δ

4

(
3
4xn

))
≤ µ(Bδ (0)) < ∞,

the µ-measure of each ball Bδ/4( 34xn)must be zero. However, as X is separable, it can be covered
by a countable collection of balls of radius δ/4, which is why µ(X ) = 0 as well. �

Let µ0 denote the prior distribution on (X ,X). If we assume that a regular conditional dis-
tribution (u0,A) 7→ Pu0(A) of y given u exists, then the joint distribution of (u,y) is given
by

P [y ∈ A,u ∈ B] = E [1A(y)1B(u)] = E [Pu (A)1B(u)] =
∫
B
Pu (A)dµ0(u) (1.2)

3



1 Nonparametric Bayesian Inference

for all A ∈ Y and B ∈ X. This allows us to express the marginal distribution of y as

P [y ∈ A] =
∫
X
Pu (A)dµ0(u) for all A ∈ Y. (1.3)

We derive Bayes’ formula under the assumption that there is a probability measure ν on
(Y ,Y) such that for every u0 ∈ X the measure Pu0 is absolutely continuous with respect to ν .
Let pu0 denote the density of Pu0 with respect to ν , i.e,

Pu0(A) =
∫
A
pu0(y)dν (y) for all A ∈ Y. (1.4)

Then we can write (1.3) as

P [y ∈ A] =
∫
A

∫
X
pu (y)dµ0(u)dν (y) for all A ∈ Y (1.5)

using Fubini’s theorem. This shows that the density of the marginal distribution of y with
respect to ν is given by

y0 7→ Z (y0) :=
∫
X
pu (y0)dµ0(u).

Theorem 1.2. Assume that there exists a probability measure ν on (Y ,Y) such that for every
u0 ∈ X the measure Pu0 is absolutely continuous with respect to ν and let pu0 denote the respective
density. Moreover, assume that Z (y) is ν -almost surely positive, where

Z (y0) :=
∫
X
pu (y0)dµ0(u) for all y0 ∈ Y .

If the family of posterior distributions {µy0}y0∈Y exists in the form of a regular conditional distri-
bution (y0,B) 7→ µy0(B) of u given y , then µy is ν -almost surely absolutely continuous with respect
to the prior distribution µ0 and in this case the density is given by

dµy0

dµ0
(u) = pu (y0)∫

X pũ (y0)dµ0(ũ)
µ0-almost surely. (1.6)

Proof. We can express (1.2) using the density pu as

P [y ∈ A,u ∈ B] =
∫
A

∫
B
pu (y)dµ0(u)dν (y)

by means of Fubini’s theorem. By de�nition of the regular conditional distribution this proba-
bility is equal to

P [y ∈ A,u ∈ B] = E [1B(u)1A(y)] = E [µy (B)1A(y)] =
∫
A
µy (B)Z (y)dν (y),

which implies that for all B ∈ X we have∫
B
pu (y)dµ0(u) = µy (B)Z (y) ν-almost surely.
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1.3 Bayes’ Formula

As Z (y) is ν-almost surely positive we may divide by Z (y), which yields

µy (B) =
∫
B pu (y)dµ0(u)∫
X pu (y)dµ0(u)

ν-almost surely.

In particular, µy is ν -almost surely absolutely continuous with respect to µ0 and in this case the
density is given by

u0 7→
pu0(y)∫

X pu (y)dµ0(u)
. �

In our context equation (1.6) is called Bayes’ formula. If the densities {pu0}u0∈X are chosen
appropriately and Z (y0) is positive for all y0 ∈ Y , then it holds for all y0 ∈ Y and de�nes a
regular conditional distribution of u given y .

Theorem 1.3. Assume that there exists a probability measure ν on (Y ,Y) such that for every
u0 ∈ X the measure Pu0 is absolutely continuous with respect to ν and let pu0 denote the respective
density. If the densities {pu0}u0∈X can be chosen in such a way that

Z (y0) :=
∫
X
pu (y0)dµ0(u) > 0 for all y0 ∈ Y

and (u0,y0) 7→ pu0(y0) is X ×Y-measurable, then

(y0,B) 7→ µy0(B) :=

∫
B pu (y0)dµ0(u)∫
X pũ (y0)dµ0(ũ)

de�nes a regular conditional distribution of u given y . In particular, for every y0 ∈ Y the posterior
distribution µy0 is absolutely continuous with respect to the prior distribution µ0 and its density is
given by

dµy0

dµ0
(u) = pu (y0)∫

X pũ (y0)dµ0(ũ)
µ0-almost surely.

Proof. We �rst show that (y0,B) 7→ µy0(B) is a Markov kernel. On the one hand, (u0,y0) 7→
pu0(y0)1B(u0) is X ×Y-measurable for every B ∈ X. Therefore,

y0 7→
∫
B
pu (y0)dµ0(u)

is Y-measurable for every B ∈ X by Fubini’s theorem. This implies in particular the Y-
measurability of

y0 7→ Z (y0) =
∫
X
pu (y0)dµ0(u).

Consequently, y0 7→ µy0(B) is Y-measurable as well for every B ∈ X. On the other hand,
u0 7→ pu0(y0) is X-measurable for every y0 ∈ Y by [Klenke 2014, Lemma 14.3] and µy0(X ) = 1,
so that µy0 is a probability measure, see Remark 4.14 in [Klenke 2014]. This shows that µy0(B) is
a Markov kernel.
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1 Nonparametric Bayesian Inference

Moreover, by (1.2), (1.4) and the de�nition of µy (B) we have

E [1B(u)1A(y)] = P [y ∈ A,u ∈ B] =
∫
A

∫
B
pu (y)dµ0(u)dν (y) =

∫
A
µy (B)Z (y)dν (y)

for all B ∈ X and A ∈ Y. Since Z is the density of the marginal distribution of y with respect to
ν by (1.5), this yields

E [1B(u)1A(y)] =
∫
A
µy (B)Z (y)dν (y) = E [µy (B)1A(y)] .

So (y0,B) 7→ µy0(B) is indeed a regular conditional distribution of u given y . �

In many cases ν is absolute continuous with respect to Pu0 for every u0 ∈ X as well. Then
pu0(y) is ν-almost surely positive, so that we can express the density pu0 as

pu0(y) = exp(−Φ(u0,y)) ν-almost surely,

using a measurable function Φ: X × Y → R, which we call potential (or negative log-likelihood).
In this case Bayes’ formula can be written in the form

dµy0

dµ0
(u) = exp(−Φ(u,y0))∫

X exp(−Φ(ũ,y0))dµ0(ũ)
µ0-almost surely.

1.4 Bayesian Inverse Problems

Here we brie�y discuss the case when the model is de�ned by an operator equation with additive
noise. For more information on the Bayesian approach to inverse problems see, e.g., [Dashti and
Stuart 2017]. Let X and Y be separable Banach spaces, each equipped with its Borel σ -algebra.
We assume that parameter and data follow the relation

y = F (u) + η,

where F is a (possibly nonlinear) operator from X to Y and η is stochastic noise, independent
of u. In this case, the model describes both the behaviour of the forward operator F and the
e�ect of the noise η. The distribution ν of the noise η on (Y ,B(Y )) plays the role of a reference
measure. For every y0 ∈ Y we de�ne the shifted measure

νy0 := ν (· − y0).

Proposition 1.4. If νF (u0) is absolutely continuous with respect to ν for every u0 ∈ X , then

(u0,A) 7→ Pu0(A) := νF (u0)(A)

is a regular conditional distribution of y given u.
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Proof. By de�nition, νF (u0) is a probability measure for every u0 ∈ X . Let

pu0 :=
dνF (u0)

dν

for everyu0 ∈ X denote the density of νF (u0) with respect to ν . Since νF (u0) � ν for allu0 ∈ X , the
family {νF (u0)}u0∈X is separable with respect to the Hellinger distance by [Strasser 1985, Lemma
4.1]. Consequently, by [Strasser 1985, Lemma 4.6], the densities {pu0}u0∈X can be chosen such
that (u0,y0) 7→ pu0(y0) is B(X )×B(Y )-measurable. Then (u0,y0) 7→ pu0(y0)1A(y0) is measurable
as well for any A ∈ B(Y ), which in turn implies that

u0 7→
∫
A
pu0(y)dν (y) =

∫
A

dνF (u0)(y) = νF (u0)(A)

is measurable by Fubini’s theorem. This shows that (u0,A) 7→ νF (u0)(A) is a Markov kernel. Now
for every A ∈ B(Y ) the conditional probability of {y ∈ A} given u is given by

P [y ∈ A|u] = νF (u)(A) µ0-almost surely,

since

E
[
νF (u)(A)1B(u)

]
=

∫
B
ν (A − F (u))dµ0(u) =

∫
B
P [η ∈ A − F (u)] dµ0(u)

=

∫
B
P [η + F (u) ∈ A] dµ0(u) = E [1A(F (u) + η)1B(u)] = E [1A(y)1B(u)]

for all B ∈ B(X ). This shows that (u0,A) 7→ Pu0(A) := νF (u0)(A) is a regular conditional
distribution of y given u. �

Typically, νF (u0) is not only absolutely continuous with respect to ν but even equivalent for
all u0 ∈ X (see Theorems 2.4 and 3.10 below). Then the family {pu0}u0∈X of densities can be
expressed as

dνF (u0)
dν (y) = pu0(y) = exp(−Φ(u0,y)) ν-almost surely,

using a measurable function Φ: X × Y → R. As described in the proof of Proposition 1.4 the
densities (u0,y0) 7→ pu0(y0) = exp(−Φ(u0,y0)) and therefore also Φ can always be chosen to be
B(X ) × B(Y )-measurable.
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2 Gaussian Measures on Hilbert Spaces

The way we will de�ne Laplacian measures on in�nite-dimensional Hilbert spaces is strongly
in�uenced by the possibility of representing Gaussian measures on separable Hilbert spaces as
a product measure of Gaussian measures on the real line. For this reason we recapitulate the
de�nition of a Gaussian measure on a locally convex space, give a brief review of the construction
of Gaussian measures on separable Hilbert spaces as in�nite-dimensional product measures and
present a result regarding the equivalence of Gaussian measures and their Radon–Nikodym
derivative with respect to each other.

2.1 Definition on Locally Convex Spaces

The de�nition of a Gaussian measure on a locally convex space is based upon the one of a
Gaussian measure on R. Here we follow the way they are de�ned in [Bogachev 1998].

De�nition 2.1 ([Bogachev 1998, Def. 1.1.1]). A Borel probability measure γ on R is called
Gaussian if it is either the Dirac measure δa at a point a ∈ R or has density

p : t 7→ 1
σ
√

2π
exp

(
−(t − a)

2

2σ 2

)
with respect to the Lebesgue measure for some a ∈ R and σ > 0. In the latter case the measure
γ is called nondegenerate.

The Dirac measure δa on (R,B(R)) is de�ned by

δa(B) =
{

1 if a ∈ B,
0 if a < B.

For any Dirac measure we put σ = 0. The mean and the variance of a Gaussian measure γ are
given by ∫

R

t γ (dt) = a,

∫
R

(t − a)2 γ (dt) = σ 2.

We will denote this measure byNa ,σ 2 . A measure with a = 0 and σ = 1 is called standard, a mean
zero Gaussian measure is called centred. When a = 0 we write Nσ 2 instead of Na ,σ 2 for short.
The Fourier transform (or characteristic function) of a Gaussian measure γ with parameters
(a,σ 2) is given by

γ̂ (y) :=
∫
R

exp(iyx)γ (dx) = exp
(
iay − 1

2σ
2y2

)
for all y ∈ R.
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Now let X be a locally convex space and X ∗ its dual space. We call a set C ⊂ X cylindrical if
it has the form

C = {x ∈ X : (l1(x), . . . , ln(x)) ∈ C0} , li ∈ X ∗.
Denote by E(X ) the σ -�eld generated by all cylindrical subsets of X . This is the minimal σ -�eld,
with respect to which all continuous linear functionals on X are measurable. While E(X ) is
always contained in the Borel σ -�eld B(X ), it may not coincide with it. However, for separable
Fréchet spaces, so in particular for separable Banach spaces, the equality E(X ) = B(X ) does
hold true, see [Bogachev 1998, Thm. A.3.7]. Gaussian measures on X are now de�ned via their
pushforwards under continuous linear functionals.

De�nition 2.2 ([Bogachev 1998, Def. 2.2.1 (ii)]). Let X be a locally convex space. A probability
measure γ de�ned on the σ -�eld E(X ), generated by X ∗, is called Gaussian if, for any f ∈ X ∗,
the induced measure γ ◦ f −1 on R is Gaussian. The measure γ is called centred if all the measures
γ ◦ f −1, f ∈ X ∗, are centred.

A Gaussian measure on a separable Hilbert space can be expressed in terms of its mean
and its covariance operator. Let µ be a probability measure on a separable Hilbert space X . If
x 7→ x is Bochner integrable with respect to µ then µ is said to have �nite expectation and its
expectation, expected value or mean a ∈ X is de�ned as

a :=
∫
X
xµ(dx).

If the map x 7→ ‖x ‖2X is Bochner integrable with respect to µ then µ is said to have �nite variance
and the bounded linear operator Q : X → X de�ned by

Qh :=
∫
X
(h, x − a)(x − a)µ(dx)

is called its covariance operator. Furthermore, the Fourier transform (or characteristic function) µ̂:
X → R of µ is de�ned by

µ̂(h) :=
∫
X
ei(h ,x )µ(dx).

Theorem 2.3 ([Bogachev 1998, Thm. 2.3.1]). Let γ be a Gaussian measure on a separable Hilbert
space X and let X ∗ be identi�ed with X by means of the Riesz representation. Then there exist a
vector a ∈ X and a symmetric nonnegative nuclear operator K such that the Fourier transform of
the measure γ equals

x 7→ exp
(
i(a, x) − 1

2 (Kx, x)
)
. (2.1)

Conversely, for every pair (a,K) of the aforementioned type, the function (2.1) is the Fourier
transform of a Gaussian measure on the space X . In addition, a is the mean of the measure γ and
K is its covariance operator.

We denote such a Gaussian measure by Na ,Q , and by NQ if a = 0.
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2.2 Representation on Separable Hilbert Spaces

2.2 Representation on Separable Hilbert Spaces

Now we take a look at the situation in in�nite-dimensional separable Hilbert spaces. The
separability permits the representation of Gaussian measures as an in�nite product of Gaussian
measures on R. Here we brie�y review the construction of Gaussian measures in [Da Prato
2001]. In Chapter 3, we will, however, construct Laplacian measures on separable Hilbert spaces
in the same way and portray their construction in detail.

Let H be an in�nite-dimensional separable Hilbert space. A continuous linear operator Q on
H is called symmetric if

(Qx,y) = (x,Qy) for all x,y ∈ H ,
Q is called positive if

(Qx, x) ≥ 0 for all x ∈ H ,
and Q is called trace class if

TrQ :=
∞∑
k=1
(Qek , ek ) < ∞

for any orthonormal basis {ek }k ∈N in H .
For any a ∈ H and any symmetric, positive trace class operator Q ∈ L(H ) the measure Na ,Q

can be represented as follows. SinceQ is of trace class, there exists an orthonormal basis (ek )k ∈N
in H and a sequence of nonnegative numbers (λk )k ∈N such that

Qek = λkek for all k ∈ N.

We identify H with `2 via the natural isomorphism γ , de�ned by

γ (x) =
∞∑
k=1

xkek for all x ∈ `2.

Then we de�ne the product measure

µ =
∞⊗
k=1
Nak ,λk

on R∞ :=
∏∞

k=1 R, where ak = (a, ek ) for all k ∈ N. This measure is concentrated on `2, that
is µ(`2) = 1, see [Da Prato 2001, Prop. 1.3.5]. Now the pushforward µ ◦ γ−1 of the measure µ
under γ is a Gaussian measure on H with mean a and covariance operatorQ , because its Fourier
transform is given by �(µ ◦ γ−1)(h) = ei(a ,h)−

1
2 (Qh ,h) for all h ∈ H

(see [Da Prato 2001, Prop. 1.3.7]). This results in the representation

Na ,Q =

( ∞⊗
k=1
Nak ,λk

)
◦ γ−1.
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By [Da Prato 2001, Prop. 1.3.7], its mean and covariance operator satisfy∫
H
(a,h)Na ,Q (dx) = (a,h), h ∈ H ,∫

H
(x − a,h)(x − a,k)Na ,Q (dx) = (Qh,k), h,k ∈ H .

2.3 The Cameron–Martin Theorem

Given an in�nite-dimensional separable Hilbert space H and a symmetric, positive trace class
operator Q ∈ L(H ), we present a criterion for the equivalence of the centred Gaussian measure
NQ and the Guassian measure Na ,Q with mean a ∈ H .

We assume that ker(Q) = {0}. Let (ek ) again denote an orthonormal basis of H , such that
Qek = λkek , k ∈ N, where (λk ) are the eigenvalues of Q . We introduce the operator Q 1/2 on H ,
which is de�ned by

Q
1
2x =

∞∑
k=1

√
λk (x, ek )ek .

Its range is given by

R(Q 1
2 ) =

{
y ∈ H :

∞∑
k=1

y2
k

λk
< ∞

}
and R(Q 1/2) is a dense proper subspace of H . However,

NQ (R(Q 1/2)) = 0,

see [Da Prato 2001, Prop. 1.5.2].

Theorem 2.4 (Cameron–Martin). (i) If a < R(Q 1/2) then Na ,Q and NQ are singular.

(ii) If a ∈ R(Q 1/2) then Na ,Q and NQ are equivalent. Moreover, the density Na ,QNQ is given by

Na ,Q

NQ
(x) =

∞∏
k=1

exp
(
− 1

2
a2
k

λk
+
akxk
λk

)
(2.2)

for NQ -almost all x ∈ H , where ak := (a, ek ) and xk := (x, ek ).
A proof of Theorem 2.4 can be found in [Da Prato 2001, Thm. 2.3.1]. Equation (2.2) is called

Cameron–Martin formula and the space R(Q 1/2) Cameron–Martin space of NQ . The Cameron–
Martin theorem shows in particular that on an in�nite-dimensional separable Hilbert space not
every translate Na ,Q , a ∈ H , of a centred Gaussian measure NQ is equivalent to NQ .

The following proposition is a special case of Proposition 3 in Section 18 of [Lifšic 1995].

Proposition 2.5. Let A ⊂ X be a convex, symmetric about zero, weakly bounded Borel subset of
X and h ∈ R(Q 1/2). Then we have

lim
r→0

NQ (h + rA)
NQ (rA) = exp

(
− 1

2
Q− 1

2h
2
X

)
.
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2.3 The Cameron–Martin Theorem

It can be used to describe the asymptotic probability of small balls around two points. Let
Br (x) ⊂ X denote the open ball with radius r centred at x ∈ X .

Corollary 2.6. For all h1,h2 ∈ R(Q 1/2) we have

lim
r→0

NQ (Br (h1))
NQ (Br (h2)) = exp

(
1
2
Q− 1

2h2
2
X −

1
2
Q− 1

2h1
2
X

)
.

Proof. It follows from Proposition 2.5 that

NQ (Br (h1))
NQ (Br (h2)) =

NQ (rB1(0))
NQ (h2 + rB1(0)) ·

NQ (h1 + rB1(0))
NQ (rB1(0))

converges towards exp( 1
2 ‖Q−

1
2h2‖2X − 1

2 ‖Q−
1
2h1‖2X ) as r → 0. �
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3 Laplacian Measures on Hilbert Spaces

In this section we will de�ne Laplacian measures on an in�nite-dimensional separable real
Hilbert space. First we will review the common de�nition of multivariate Laplace distributions
and conclude that for our purposes, they lack some desirable properties. Therefore we will not
try to generalise this de�nition to in�nite-dimensional spaces, but instead construct a Laplacian
measure as an in�nite product measure, similar to the construction of Gaussian measures in
[Da Prato 2001]. It will be based upon the Laplacian measures on R and Rd , which we will
study �rst.

3.1 Laplacian Measures on R

First we introduce Laplacian measures on R and summarise some basic properties. For any
a ∈ R and λ ≥ 0 we de�ne the Laplacian measure La ,λ on (R,B(R)) as follows. If λ = 0 we set

La ,0 = δa,

where δa is the Dirac measure at a. If λ > 0 we set

La ,λ(B) =
1√
2λ

∫
B
e
−
√

2|x−a |√
λ dx ∀B ∈ B(R).

La ,λ is a probability measure, since

La ,λ(R) =
1√
2λ

∫
R

e−
√

2
λ |x−a |dx =

1
2

∫
R

e−|x |dx = 1.

If a = 0, we write Lλ short hand for L0,λ . This measure has the following properties.

Proposition 3.1. The probability measure La ,λ has mean a and variance λ, i.e.,∫
R

xLa ,λ(dx) = a,∫
R

(x − a)2La ,λ(dx) = λ.

Moreover, its characteristic function �La ,λ is given by

�La ,λ(h) :=
∫
R

eihxLa ,λ(dx) =
eiah

1 + 1
2λh

2 ∀h ∈ R.

We will call a real valued random variable Laplacian if its probability distribution is a Laplacian
measure La ,λ on R for some a ∈ R and λ ≥ 0.

15



3 Laplacian Measures on Hilbert Spaces

3.2 Elliptically Contoured Laplace Distributions on Rd

Now we introduce and discuss the common de�nition of multivariate Laplace distributions. First
of all, multivariate Laplace distributions are de�ned di�erently by di�erent authors – for details
we refer to the Introduction to Part II of [Kotz, Kozubowski, and Podgórski 2001]. Most often,
however, they are de�ned as a class of elliptically contoured distributions, which means that
their characteristic function and their density depend on its variables only through a quadratic
form.

Let Q ∈ Rd×d be a nonnegative de�nite symmetric matrix. Then a d-dimensional distri-
bution is said to be multivariate symmetric Laplace with parameter Q , denoted SLd (Q) if its
characteristic function is of the form

Ψ(h) = 1
1 + 1

2 (Qh,h)
for all h ∈ Rd .

This distribution is centred at zero and its covariance matrix is given by Q . Moreover, its density
function (for a nonsingular distribution) is given by

д(x) = (2π )− 2
d det(Q)− 1

2

∫ ∞

0
exp

(
−(Q

−1x, x)
2z − z

)
z−

d
2 dz for all x ∈ Rd \ {0},

see Corollary 6.5.1 in [Kotz, Kozubowski, and Podgórski 2001]. The density can also be expressed
in terms of the modi�ed Bessel function of the third kind Kν as

д(x) = 2(2π )− 2
d det(Q)− 1

2

( (Q−1x, x)
2

) ν
2
Kν

(√
2(Q−1x, x)

)
for all x ∈ Rd \ {0},

where ν := (2−d)/2, see Section 5.2.2 in [Kotz, Kozubowski, and Podgórski 2001]. Note that the
density tends to in�nity as x → 0 unless d = 1.

A random variable X ∼ SLd (Q) has the following representation. Let Z be a Gaussian
random variable on Rd with mean zero and covariance matrix Q and letW be exponentially
distributed on R with mean 1, independent of Z . Then

X
d
=
√
WZ

This means that a multivariate symmetric Laplacian random variable can be thought of as a cen-
tred Gaussian random variable with stochastic variance which has an exponential distribution.

Let Z = (Z1, . . . ,Zd ) be a multivariate Gaussian random variable with mean zero and covari-
ance matrix Q . If Z is uncorrelated, i.e., if Q is diagonal, then its components Z1, . . . ,Zd are
independent. In contrast, this is not the case for a multivariate symmetric Laplacian random
variable X ∼ SLd (Q).

One way to generalise this de�nition to an in�nite-dimensional Hilbert space H would be to
seek a distribution whose characteristic function is given by

Φ(h) = 1
1 + 1

2 (Qh,h)H
for all h ∈ H ,
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3.3 Laplacian Product Measures on Rd

or to de�ne an H valued random variable X via

X =
√
WZ ,

where Z is an H valued Gaussian random variable with mean zero and W is exponentially
distributed with mean 1, respectively.

We do, however, want to generalise the 1-dimensional Laplace distribution to a multivariate
Laplace distribution whose density depends on its variable through a weighted 1-norm rather
than a quadratic form. So we do not want the distribution to be elliptically contoured. Also, we
want the components of a multivariate Laplacian random variable to be independent. This leads
to the de�nition of a Laplacian measure on Rd as a product measure.

3.3 Laplacian Product Measures on Rd

Finite Laplacian product measures are of interest not only for their own sake but also because
the de�nition of Laplacian measures on in�nite-dimensional Hilbert spaces will be based upon
theirs. We want to de�ne a probability measure La ,Q on Rd for any a ∈ Rd and any self-adjoint
positive Q ∈ L(Rd ) in such a way that it has mean a and covariance operator Q .

Let Q ∈ L(Rd ) be self-adjoint and positive de�nite and let e1, . . . , ed be an orthonormal basis
of H consisting of eigenvectors of Q , such that

Qek = λkek , for k = 1, . . . ,d,

with the associated eigenvalues λk ≥ 0. Now we de�ne the Laplacian measure La ,Q on
(Rd ,B(Rd )) as the pushforward

La ,Q = µ ◦ γ−1

of the product measure

µ =
d⊗
k=1
Lak ,λk .

under the isomorphism γ : (x1, . . . , xd ) 7→
∑d

k=1 xkek , where

ak = (a, ek ) for k = 1, . . . ,d .

If a = 0 we again write LQ short hand for L0,Q .

Remark 3.2. Note that although we do not include the basis e1, . . . , ed into the notation La ,Q ,
the de�nition of the Laplacian measure does depend on its speci�c choice.

Let n ≤ d , k1 < · · · < kn ≤ d be positive integers. For every A ∈ B(Rn) let Ik1 , ...,kn ;A denote
the cylindrical subset

Ik1 , ...,kn ;A := {(x1, . . . , xd ) ∈ Rd : (xk1, . . . , xkn ) ∈ A}.
The product measure µ has the essential property that

µ(Ik1 , ...,kn ;A) =
(L(a ,ek1 ),λk1

× · · · × L(a ,ekd ),λkd
)(A)

17



3 Laplacian Measures on Hilbert Spaces

for all A ∈ B(Rn). Consequently,

La ,Q
({
x ∈ Rd :

((x, ek1), . . . , (x, ekd )
) ∈ A})

= (µ ◦ γ−1)(γ (Ik1 , ...,kn ;A)
)

=
(Lak1 ,λk1

× · · · × Lakd ,λkd

)(A)
for all A ∈ B(Rn). The measure La ,Q has the following basic properties.

Proposition 3.3. Let a ∈ Rd and Q ∈ L(Rd ) be self-adjoint and positive. Then La ,Q has mean
a and covariance operator Q , i.e., ∫

Rd
xLa ,Q (dx) = a,∫

Rd
(y, x − a)(z, x − a)La ,Q (dx) = (Qy, z) ∀y, z ∈ Rd .

Moreover, its characteristic function �La ,Q is given by

�La ,Q (h) :=
∫
Rd

ei(h ,x )La ,Q (dx) = ei(a ,h)
d∏
k=1

1
1 + 1

2λk (h, ek )2
∀h ∈ Rd .

Finally, if Q is injective, then we have

La ,Q (B) = 1√
2d detQ

∫
B

exp
(
−

d∑
k=1

√
2|(x − a, ek )|√

λk

)
dx

=
1√

2d detQ

∫
B

exp
(
−
√

2
d∑
k=1

���(Q− 1
2 (x − a), ek

)���) dx
for all B ∈ B(Rd ).

Proof. For every y ∈ Rd we have(∫
Rd

xLa ,Q (dx),y
)
=

∫
Rd
(x,y)La ,Q (dx) =

∫
Rd

n∑
k=1
(x, ek )(ek ,y)La ,Q (dx)

=

n∑
k=1
(ek ,y)

∫
R

x̃L(a ,ek ),λk (dx̃) =
n∑
k=1
(a, ek )(ek ,y) = (a,y)

by Proposition 3.1, which implies
∫
Rd xLa ,Q (dx) = a.

Next, we consider∫
Rd
(x − a,y)(x − a, z)La ,Q (dx) =

n∑
k=1

n∑
j=1
(ej ,y)(ek , z)

∫
Rd
(x − a, ej )(x − a, ek )La ,Q (dx)

18



3.3 Laplacian Product Measures on Rd

for y, z ∈ Rd . As∫
Rd
(x − a, ej )(x − a, ek )La ,Q (dx)

=

∫
Rd

((x, ej ) − (a, ej )) ((x, ek ) − (a, ek ))La ,Q (dx)

=

∫
R2

(
x̃1 − (a, ej )

) (
x̃2 − (a, ek )

)L(a ,ej ),λj (dx̃1)L(a ,ek ),λk (dx̃2)

=

(∫
R

x̃1L(a ,ej ),λj (dx̃1) − (a, ej )
) (∫

R

x̃2L(a ,ek ),λk (dx̃2) − (a, ek )
)
= 0

for j , k and ∫
Rd
(x − a, ek )2La ,Q (dx) =

∫
R

(x̃ − (a, ek ))2L(a ,ek ),λk (dx̃) = λk

by Proposition 3.1, we obtain∫
Rd
(x − a,y)(x − a, z)La ,Q (dx) =

n∑
k=1

n∑
j=1
(ej ,y)(ek , z)

∫
Rd
(x − a, ej )(x − a, ek )La ,Q (dx)

=

n∑
k=1
(y, ek )(ek , z)λk =

n∑
k=1
(y,Qek )(ek , z)

=

n∑
k=1
(Qy, ek )(ek , z) = (Qy, z).

Concerning the characteristic function of La ,Q , Proposition 3.1 yields∫
Rd

ei(h ,x )La ,Q (dx) =
∫
Rd

ei
∑n
k=1(x ,ek )(ek ,h)La ,Q (dx) =

∫
Rd

n∏
k=1

ei(x ,ek )(ek ,h)La ,Q (dx)

=

n∏
k=1

∫
R

ei x̃k (ek ,h)L(a ,ek ),λk (dx̃k ) =
n∏
k=1

ei(a ,ek )(ek ,h)

1 + 1
2λk (h, ek )2

= ei(a ,h)
n∏
k=1

1
1 + 1

2λk (h, ek )2

for all h ∈ Rd .
In order to �nd the Lebesgue density ofLa ,Q , it is su�cient to consider measurable rectangles

in Rd , i.e., sets of the form R = B1 × · · · × Bd with B1, . . . ,Bd ∈ B(R), since they generate the
product σ -algebra B(Rd ) on Rd . Equivalently, we may consider the images of measurable
rectangles under the isomorphism γ , which can be expressed as γ (R) = {x ∈ Rd : (x, ek )k ∈
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3 Laplacian Measures on Hilbert Spaces

Bk for k = 1, . . . ,d}. Now, the de�nition of the product measure and a change of variables yields

La ,Q (γ (R)) =
d∏
k=1
L(a ,ek ),λk (Bk ) =

d∏
k=1

(
1√
2λk

∫
Bk

exp
(
−
√

2|x̃k − (a, ek )|√
λk

)
dx̃k

)
=

1√
2d detQ

∫
R

exp
(
−

n∑
k=1

√
2|x̃k − (a, ek )|√

λk

)
dx̃

=
1√

2d detQ

∫
γ (R)

exp
(
−

n∑
k=1

√
2|(x, ek ) − (a, ek )|√

λk

)
dx . �

Again we call an Rd valued random variable Laplacian, if its probability distribution is a
Laplacian measure La ,Q on Rd . We can write such a Laplacian random variable ξ as

ξ =
d∑
k=1

ξkek ,

where ξk ∼ Lak ,λk are independent, real valued Laplacian random variables.

3.4 Laplacian Infinite Product Measures

Now we turn towards the case of an in�nite-dimensional separable real Hilbert space H with
norm ‖·‖ and inner product (·, ·). Let a ∈ H and letQ ∈ L(H ) be a self-adjoint positive trace class
operator. We want to de�ne a Laplacian product measure on H that has mean a and covariance
operator Q .

Since Q is trace class and self-adjoint, an orthonormal basis (ek )k ∈N of H consisting of
eigenvectors of Q exists. Let (λk )k ∈N be the associated nonnegative eigenvalues in descending
order. Then we have

Qek = λkek for all k ∈ N.
We can identifyH with the space `2 of all sequences (xk )k ∈N of real numbers with

∑∞
k=1 |xk |2 < ∞

via the natural isomorphism γ : `2 → H ,

(xk )k ∈N 7→
∞∑
k=1

xkek . (3.1)

We will �rst de�ne a Laplacian product measure on the space R∞ :=
∏∞

k=1 R of all sequences of
real numbers and then restrict it to `2. A subset of R∞ is called cylindrical if it is of the form

Ik1 , ...,kn ;A := {(x j )j ∈ R∞ : (xk1, . . . , xkn ) ∈ A},

wheren, k1 < · · · < kn are positive integers andA ∈ B(Rn). Let C denote the set of all cylindrical
subsets of R∞. By [Klenke 2014, Remark 14.10], the Borel σ -algebra generated by C coincides
with

∏∞
k=1 B(R), which in turn is equal to the Borel σ -algebra B(R∞) induced by the product

topology on R∞ by [Klenke 2014, Thm. 14.8].
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3.4 Laplacian In�nite Product Measures

Now let ak := (a, ek ) for all k ∈ N and µk := Lak ,λk . We de�ne the product measure

µ :=
∞⊗
k=1

µk =
∞⊗
k=1
Lak ,λk

for all Ik1 , ...,kn ;A ∈ C by
µ(Ik1 , ...,kn ;A) = (µk1 × · · · × µkn )(A).

Then, by [Da Prato 2001, Thm. 1.3.3], the function µ is σ -additive on C and has a unique extension
to a probability measure on (R∞,B(R∞)).

Proposition 3.4. The measure µ is concentrated on `2, i.e., µ(`2) = 1.

Proof. We have ∫
R

x2
kLak ,λk (dxk ) =

∫
R

(xk − ak )2 − a2
k + 2xkak Lak ,λk (dxk )

= λk − a2
k + 2a2

k = λk + a
2
k

for all k ∈ N. Note that µk = Lak ,λk is the pushforward measure µ ◦p−1
k of µ under the projection

pk : R∞ → R, x 7→ xk , since

(µ ◦ p−1
k )(A) = µ(Ik ;A) = Lak ,λk (A)

for every Borel measurable set A ⊆ R. Together with the monotone convergence theorem this
yields ∫

R∞

∞∑
k=1

x2
k µ(dx) = lim

n→∞

∫
R∞

n∑
k=1

x2
k µ(dx) = lim

n→∞

n∑
k=1

∫
Ik ;R

x2
k µ(dx)

=

∞∑
k=1

∫
R

x2
kLak ,λk (dxk ) =

∞∑
k=1

(
λk + a

2
k
)
= TrQ + ‖a‖2 < ∞.

This implies that ‖·‖`2 is µ-almost surely �nite on R∞. In other words, µ(R∞ \ `2) = 0, and
therefore µ(`2) = 1. �

Proposition 3.5. Let R∞ be equipped with the product topology and let `2 be equipped with the
‖·‖2 norm topology. Then B(R∞) ∩ `2 = B(`2).

Proof. We know that B(R∞) is generated by the cylindrical sets in R∞ and that B(`2) is gener-
ated by open balls in `2.

To prove the inclusion B(R∞) ∩ `2 ⊆ B(`2), consider the intersection I1, ...,n;M ∩ `2 of an
arbitrary cylindrical subset I1, ...,n;M of R∞ with n ∈ N and M ∈ B(Rn) and the space `2. The
projection Pn : `2 → Rn , x 7→ (x1, . . . , xn)T is continuous and hence measurable, so that

I1, ...,n;M ∩ `2 = P−1
n (M) ∈ B(`2).
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3 Laplacian Measures on Hilbert Spaces

To prove the reverse inclusion, consider an open ball

B`2(x, r ) :=
{
y ∈ `2 :

∞∑
k=1
|yk − xk |2 < r 2

}
in `2 with radius r > 0 around x ∈ `2. It can be written as the unionB`2(x, r ) = ⋃

n∈NU`2(x, r− 1
n )

of closed balls

U`2

(
x, r − 1

n

)
:=

{
y ∈ `2 :

∞∑
k=1
|yk − xk |2 ≤

(
r − 1

n

)2
}
.

Each closed ball, in turn, can be written as the intersection U`2(x, s) = ⋂
m∈NUm of closed sets

Um :=
{
y ∈ `2 :

m∑
k=1
|yk − xk |2 ≤ s2

}
.

Um is closed, since for every y ∈ `2 \Um , the open ball B`2(y, t) with radius

t :=
(
m∑
k=1
|yk − xk |2

) 1
2

− s

is contained in the complement of Um . Furthermore, each Um = Am ∩ `2 is the intersection of a
cylindrical subset

Am := I1, ...,m;URm ((x1 , ...,xm )T ,s) =

{
y ∈ R∞ :

m∑
k=1
|yk − xk |2 ≤ s2

}
of R∞ and the space `2, so that Um ∈ B(R∞) ∩ `2. This implies that

U`2(x, s) =
⋂
m∈N

Um ∈ B(R∞) ∩ `2

and hence also
B`2(x, r ) =

⋃
n∈N

U`2

(
x, r − 1

n

)
∈ B(R∞) ∩ `2. �

Propositions 3.4 and 3.5 show that the restriction of µ to (`2,B(`2)) is a probability measure.
In a last step, we de�ne the Laplacian measure La ,Q on H as the pushforward

La ,Q := µ ◦ γ−1 =

( ∞⊗
k=1
Lak ,λk

)
◦ γ−1

of µ under the natural isomorphism γ between `2 and H de�ned by (3.1). Here we can also state
the inverse γ−1 explicitly as x 7→ ((x, ek ))k ∈N.

Remark 3.6. Please be aware that, as in the �nite dimensional case, the de�nition of La ,Q
does depend on the speci�c choice of the basis {ek }k ∈N, even though we do not include it into
the notation.
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Proposition 3.7. La ,Q has mean a and covariance operator Q , i.e.,∫
H
(x,y)La ,Q (dx) = (a,y) for all y ∈ H ,∫

H
(y, x − a)(z, x − a)La ,Q (dx) = (Qy, z) for all y, z ∈ H .

Furthermore, its characteristic function is given by

�La ,Q (h) = exp
(
i(a,h)

∞∏
k=1

1
1 + 1

2λk (h, ek )2

)
for all h ∈ H .

Proof. For all x ∈ H and n ∈ N we de�ne

Pnx :=
n∑
k=1
(x, ek )ek .

Then Pnx → x for all x ∈ H ,

|(Pnx,y)| ≤ ‖Pnx ‖‖y ‖ ≤ ‖x ‖‖y ‖
for all x,y ∈ H and x 7→ ‖x ‖‖y ‖ is La ,Q -integrable, since(∫

H
‖x ‖La ,Q (dx)

)2
≤

∫
H
‖x ‖2La ,Q (dx) = TrQ + ‖a‖2 < ∞.

This allows us to use Lebesgue’s dominated convergence theorem to obtain∫
H
(x,y)La ,Q (dx) = lim

n→∞

∫
H
(Pnx,y)La ,Q (dx)

for all y ∈ H . Furthermore, we compute∫
H
(Pnx,y)La ,Q (dx) =

∫
H

n∑
k=1
(x, ek )(ek ,y)La ,Q (dx) =

n∑
k=1
(ek ,y)

∫
R

x̃L(a ,ek ),λk (dx̃)

=

n∑
k=1
(a, ek )(ek ,y) = (Pna,y)

using Proposition 3.1. Now passing on to limits on both sides yields the �rst proposition.
Similarly,

|(Pn(x − a),y)(Pn(x − a), z)| ≤ ‖x − a‖2‖y ‖‖z‖
for all x,y, z ∈ H and ‖x − a‖2 is La ,Q -integrable with∫

H
‖x − a‖2La ,Q (dx) =

∫
H

∞∑
k=1
|(x − a, ek )|2 La ,Q (dx)

=

∞∑
k=1

∫
R

|x̃ − (a, ek )|2 L(a ,ek ),λk (dx̃) =
∞∑
k=1

λk = TrQ
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by the monotone convergence theorem and Proposition 3.1, so that∫
H
(x − a,y)(x − a, z)La ,Q (dx) = lim

n→∞

∫
H
(Pn(x − a),y)(Pn(x − a), z)La ,Q (dx)

for all y, z ∈ H by Lebesgue’s dominated convergence theorem. If j , k , we observe that∫
H
(x − a, ej )(x − a, ek )La ,Q (dx)

=

∫
Ij ,k ;R2

((x, ej ) − (a, ej )) ((x, ek ) − (a, ek ))La ,Q (dx)

=

∫
R2

(
x̃1 − (a, ej )

) (
x̃2 − (a, ek )

)L(a ,ej ),λj (dx̃1)L(a ,ek ),λk (dx̃2)

=

(∫
R

x̃1L(a ,ej ),λj (dx̃1) − (a, ej )
) (∫

R

x̃2L(a ,ek ),λk (dx̃2) − (a, ek )
)
= 0

by Proposition 3.1, whereas∫
H
(x − a, ek )2La ,Q (dx) =

∫
Ik ;R
(x − a, ek )2La ,Q (dx)

=

∫
R

(x̃ − (a, ek ))2L(a ,ek ),λk (dx̃) = λk .

This leads to ∫
H
(Pn(x − a),y)(Pn(x − a), z)La ,Q (dx)

=

n∑
k=1

n∑
j=1
(ej ,y)(ek , z)

∫
H
(x − a, ej )(x − a, ek )La ,Q (dx)

=

n∑
k=1
(y, ek )(ek , z)λk =

n∑
k=1
(y,Qek )(ek , z)

=

n∑
k=1
(Qy, ek )(ek , z) = (PnQy, z).

Letting n tend to in�nity on both sides proves the second proposition.
Finally, we consider the characteristic function of La ,Q . As |ei(h ,Pnx ) | ≤ 1 for all x,h ∈ H and

n ∈ N and
∫
H 1La ,Q (dx) = 1, it follows from Lebesgue’s dominated convergence theorem that

�La ,Q (h) =
∫
H
ei(h ,x )La ,Q (dx) = lim

n→∞

∫
H
ei(h ,Pnx )La ,Q (dx)
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for all h ∈ H , where∫
H
ei(h ,Pnx )La ,Q (dx) =

∫
H
ei

∑n
k=1(x ,ek )(ek ,h)La ,Q (dx) =

∫
H

n∏
k=1

ei(x ,ek )(ek ,h)La ,Q (dx)

=

n∏
k=1

∫
R

ei x̃ (ek ,h)L(a ,ek ),λk (dx̃) =
n∏
k=1

ei(a ,ek )(ek ,h)

1 + 1
2λk (ek ,h)2

= ei(Pna ,h)
n∏
k=1

1
1 + 1

2λk (ek ,h)2

by Proposition 3.1. Forming limits on both sides yields

�La ,Q (h) = ei(a ,h)
∞∏
k=1

1
1 + 1

2λk (h, ek )2
for all h ∈ H . �

Similar to the �nite-dimensional case we call an H valued random variable Laplacian, if its
probability distribution is a Laplacian measure La ,Q on H . We can express such a Laplacian
random variable ξ as a series

ξ =
∞∑
k=1

ξkek ,

where ξk ∼ Lak ,λk are independent, real valued Laplacian random variables.
Since there is no Lebesgue measure on in�nite-dimensional Banach spaces, we cannot state a

density in the same way as in the �nite-dimensional case. We will, however, be able to state the
density of La ,Q with respect to LQ .

3.5 Admissible Shi�s

Now we address the question for which a ∈ H the measure La ,Q with mean a is absolutely
continuous with respect to the centred measure LQ .

If H is �nite-dimensional, then La ,Q and LQ are equivalent for every a ∈ H and we can state
the density

dLa ,Q

dLQ
=

exp(−√2
∑d

k=1 |(Q−
1
2 (x − a), ek )|)

exp(−√2
∑d

k=1 |(Q−
1
2x, ek )|)

= exp
(
−
√

2
d∑
k=1

|(x − a, ek )| − |(x, ek )|√
λk

)
.

directly as the quotient of the densities of La ,Q and LQ . If, on the other hand, H is in�nite
dimensional, this does not have to be the case for all a ∈ H , as we have seen for the Gaussian
measure in Section 2.3.

We will derive a criterion similar to Theorem 2.4 and show that, as in the Gaussian case, La ,Q
and LQ are equivalent if a ∈ R(Q 1/2) and singular otherwise. We will do this using a result by
Kakutani characterising the equivalence of in�nite product measures using Hellinger integrals.
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Let µ and ν be probability measures on (H ,B(H )). Then the Hellinger integral of µ and ν is
de�ned by

H (µ,ν ) =
∫
H

√
dµ

dζ

dν

dζ
dζ ,

where ζ is a probability measure on (H ,B(H )), such that both µ and ν are absolutely continuous
with respect to ζ . Such a reference measure is always given by ζ = 1

2 (µ + ν ) and the integral
does not depend on the choice of ζ . If µ and ν are equivalent, then we have

dν

dζ
=
dν

dµ

dµ

dζ

and can therefore express the Hellinger integral of µ and ν as

H (µ,ν ) =
∫
H

√
dν

dµ

dµ

dζ
dζ =

∫
H

√
dν

dµ
dµ,

without the need for a reference measure ζ .
We take a look at the Hellinger-integral of Laplacian measures on R.

Example 3.8. For a ∈ R and λ > 0, we have

dLa ,λ

dLλ
(x) = e

−√2 |x−a |−|x |√
λ ,

and a straightforward computation yields

H (Lλ,La ,λ) =
∫
R

e
− |x−a |−|x |√

2λ Lλ(dx) =
(
1 + |a |√

2λ

)
e
− |a |√

2λ > 0.

The following result by Kakutani allows us to use the Hellinger integral to draw conclusions
about the equivalence of in�nite product measures. Its proof can be found in [Kakutani 1948].

Theorem 3.9 (Kakutani). Let (µk )k ∈N and (νk )k ∈N be sequences of probability measures on
(R,B(R)), where µk and νk are equivalent for all k ∈ N, and de�ne the product measures

µ =
∞⊗
k=1

µk , ν =
∞⊗
k=1

νk

on R∞. Then,

H (µ,ν ) =
∞∏
k=1

H (µk ,νk ).

Moreover, the following alternative holds.

(i) If H (µ,ν ) > 0, then µ and ν are equivalent and the Radon–Nikodym derivative is given by

dν

dµ
(x) =

∞∏
k=1

dνk
dµk
(xk )

µ-almost everywhere.
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3.5 Admissible Shifts

(ii) If H (µ,ν ) = 0, then µ and ν are singular.

We apply Kakutani’s theorem to Laplacian measures on H . Note that the range of Q 1/2 is
given by

R(Q 1
2 ) =

{
a ∈ H :

∞∑
k=1

a2
k

λj
< ∞

}
.

Theorem 3.10. (i) If a < R(Q 1
2 ), then La ,Q and LQ are singular.

(ii) If a ∈ R(Q 1
2 ), then La ,Q and LQ are equivalent and the density dLa ,Q

dLQ is given by

dLa ,Q

dLQ
(x) = exp

(
−
√

2
∞∑
k=1

(���(Q− 1
2 (x − a), ek )

��� − ���(Q− 1
2x, ek )

���))
= exp

(
−
√

2
∞∑
k=1

|xk − ak | − |xk |√
λk

)
LQ -almost everywhere, where xk := (x, ek ) and ak := (a, ek ) for all k ∈ N.

Proof. We apply Theorem 3.9 withνk := Lak ,λk and µk := Lλk for allk ∈ N. ThenLa ,Q = ν◦γ−1

and LQ = µ ◦ γ−1, where γ (x) :=
∑∞

k=1 xkek for all x ∈ `2. From Example 3.8 we know that

H (µ,ν ) =
∞∏
k=1

H (µk ,νk ) =
∞∏
k=1

((
1 + |ak |√

2λk

)
e
− |ak |√

2λk

)
.

We consider

− lnH (µ,ν ) =
∞∑
k=1

( |ak |√
2λk
− ln

(
1 + |ak |√

2λk

))
(3.2)

and note that H (µ,ν ) > 0 if and only if this series converges. By the alternating series test, the
�rst partial sum S1 = t of the Mercator series

ln(1 + t) =
∞∑
k=1
(−1)k+1 t

k

k
∀t ∈ (−1, 1]

satis�es the error bound
t − ln(1 + t) ≤ t2

2 ∀t ∈ [0, 1).
Also, we can show that

t − ln(1 + t) ≥ t2

2 −
t3

3 ≥
t2

6 ∀t ∈ [0, 1).

To this end, we note that we have equality for t = 0 and that the derivative computes as(
t − ln(1 + t) − t2

2 +
t3

3

) ′
=

t3

1 + t ≥ 0 ∀t ∈ [0, 1).
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From these two estimates we obtain
a2
k

12λk
≤ |ak |√

2λk
− ln

(
1 + |ak |√

2λk

)
≤

a2
k

4λk
(3.3)

for all k ∈ N.
For a ∈ R(Q 1/2) we have

∑∞
k=1

a2
k
λj
< ∞ and thus in particular a2

k
2λk → 0 as k → ∞. Now we

can choose N ∈ N such that |ak |√
2λk
< 1 for all k ≥ N . This yields

− lnH (µ,ν ) ≤
N−1∑
k=1

( |ak |√
2λk
− ln

(
1 + |ak |√

2λk

))
+

1
4

∞∑
k=N

a2
k

λk
< ∞,

which implies H (µ,ν ) > 0. Now Kakutani’s theorem guarantees equivalence of µ and ν in case
that a ∈ R(Q 1/2) and, together with Example 3.8, states that the density of ν with respect to µ is
given by

dν
dµ (x) =

∞∏
k=1

dνk
dµk
(xk ) =

∞∏
k=1

e
−√2 |xk −ak |−|xk |√

λk = e
−√2

∑∞
k=1

|xk −ak |−|xk |√
λk .

If, on the other hand, we assume that − lnH (µ,ν ) < ∞ for a < R(Q 1
2 ), we have

|ak |√
2λk
− ln

(
1 + |ak |√

2λk

)
→ 0

as k →∞ by (3.2). Using (3.3), we obtain that a2
k

12λk → 0 as well, which again allows us to choose
N ∈ N such that |ak |√

2λk
< 1 for all k ≥ N . However, since a < R(Q 1

2 ) we have

− lnH (µ,ν ) ≥
N−1∑
k=1

( |ak |√
2λk
− ln

(
1 + |ak |√

2λk

))
+

1
12

∞∑
k=N

a2
k

λk
= ∞,

which is a contradiction. So H (µ,ν ) = 0, which implies that µ and ν are singular.
By Proposition 3.4, R∞ \ `2 is a null set both under µ and ν . Therefore the equivalence or

singularity of µ and ν on R∞ transfers to their restrictions to `2. In a last step, we show that it
further transfers to LQ and La ,Q . Assume that ν � µ. Then for every A ∈ B(H ) we have

La ,Q (A) = (ν ◦ γ−1)(A) =
∫
γ −1(A)

dν
dµ (x)µ(dx) =

∫
A

dν
dµ

(
γ−1(x̃))LQ (dx̃)

=

∫
A

exp
(
−
√

2
∞∑
k=1

|(x̃, ek ) − (a, ek )| − |(x̃, ek )|√
λk

)
LQ (dx̃).

This shows that La ,Q is absolutely continuous with respect to LQ and has the stated density. A
similar computation shows that µ � ν implies LQ � La ,Q .

Finally, assume that µ and ν are singular and letA ∈ B(`2) such that µ(A) = 0 and ν (`2\A) = 0.
Then LQ and La ,Q are singular as well, because

LQ (γ (A)) = (µ ◦ γ−1)(γ (A)) = µ(A) = 0
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3.5 Admissible Shifts

and
La ,Q (H \ γ (A)) = La ,Q (γ (`2) \ γ (A)) = La ,Q (γ (`2 \A)) = ν (`2 \A) = 0

by the surjectivity of γ . �

Now we show that the space of admissible shifts is a null set under LQ .

Lemma 3.11. We have LQ (R(Q 1
2 )) = 0.

Proof. For any n,k ∈ N we de�ne

Un =

{
y ∈ H :

∞∑
j=1

y2
j

λj
< n2

}
,

and

Un,k =

{
y ∈ H :

2k∑
j=1

y2
j

λj
< n2

}
.

Then R(Q 1
2 ) = ⋃

n∈NUn and the sets Un are ascending, which yields

LQ (R(Q
1
2 )) = lim

n→∞LQ (Un).

Furthermore, Un =
⋂

k ∈NUn,k holds for all n ∈ N and the sets Un,k are descending in k . So it is
enough to show that

LQ (Un) = lim
k→∞
LQ (Un,k ) = 0.

We substitute and estimate,

LQ (Un,k ) =
∫{

y ∈R2k :
∑2k
j=1

y 2
j
λj

<n2
} 2k∏

j=1
Lλj (dyj ) =

∫{
y ∈R2k :

∑2k
j=1 y

2
j <n

2
} 2k∏

j=1
L1(dyj )

=

∫
{y ∈R2k :‖y ‖2<n}

LId2k (dy) =
∫
{y ∈R2k :‖y ‖2<n}

1√
22k

e−
√

2
∑2k
j=1 |yj |dy

≤ 1
2k

∫
{y ∈R2k :‖y ‖2<n}

dy

where Id2k denotes the identity on R2k . This implies

LQ (Un,k ) ≤
1
k!

(
πn2

2

)k
because the Lebesgue measure of the Euclidean 2k-ball with radius n is n2k π k

k ! , see, e.g., Example
8.7.11 in [Benedetto 2009]. It follows, that limk→∞Un,k = 0. �
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4 Variational Characterisation of MAP
Estimates

We return to the setting described in Chapter 1. Let X and Y be separable Banach spaces, each
equipped with its Borel σ -algebra. We assume that for y ∈ Y the posterior distribution µy is
absolutely continuous with respect to the prior distribution µ0 and that its density is given by

dµy

dµ0
(u) = exp(−Φ(u,y))∫

X exp(−Φ(ũ,y))dµ0(ũ)
µ0-almost surely, (4.1)

where Φ: X × Y → R is a measurable function. Throughout this chapter, we will consider the
posterior for a �xed value y ∈ Y and regard Φ(u) = Φ(u,y) as a function of u exclusively.

4.1 Maximum A Posteriori Estimates

A common way to de�ne an estimator for the posterior is by considering modes of the posterior
distribution, i.e., points that maximise the posterior probability in an appropriate sense. For a
separable Banach space X , the following de�nition of a MAP estimate has been introduced in
[Dashti, Law, et al. 2013]. Let Bε (x) ⊂ X denote the open ball with radius ε centred at x ∈ X .

De�nition 4.1 ([Dashti, Law, et al. 2013, Def. 3.1]). Let µ be a probability measure on X . A
point û ∈ X is called mode of µ, if it satis�es

lim
ε→0

µ(Bε (û))
supu ∈X µ(Bε (u)) = 1. (4.2)

A mode of the posterior distribution µy is called maximum a posteriori (MAP) estimate.

If the space X is �nite-dimensional and the prior distribution µ0 has a density with respect to
the Lebesgue measure, we can express this density in the form exp(−R(·)) with a function R:
X → R ∪ {∞}. Consequently, the Lebesgue density of the posterior distribution µy is given by

u 7→ exp(−Φ(u) − R(u)).
In a �nite-dimensional setting, MAP estimates are usually de�ned directly as maximisers of the
posterior density or, equivalently, as minimisers of

u 7→ Φ(u) + R(u). (4.3)

If both Φ and R are continuous, then this de�nition coincides with De�nition 4.1. Also note
that De�nition 4.1 is a global de�nition in the sense that it excludes points which maximize the
posterior density only locally and not globally.
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4 Variational Characterisation of MAP Estimates

In an in�nite-dimensional setting, in contrast, the posterior distribution does not have a
canonical density due to the lack of a Lebesgue measure. We only have its density with respect
to the prior distribution. This gives rise to the question how to de�ne a generalised posterior
density in a canonical way, such that its maximisers are precisely the modes of µy according to
De�nition 4.1. A natural candidate for a generalised logarithmic density is the Onsager–Machlup
functional, which in our context is de�ned by the asymptotic probability of small balls around
two points.

De�nition 4.2. Let µ be a probability measure on X . Let E ⊂ X denote the set of all admissible
shifts for µ that yield an equivalent measure, i.e., all h ∈ X for which the shifted measure

µh := µ(· − h)

is equivalent with µ. A functional I : E → R is called Onsager–Machlup functional of µ, if

lim
ε→0

µ(Bε (h1))
µ(Bε (h2)) = exp (I (h2) − I (h1)) for all h1,h2 ∈ E.

Note that this property is only required to hold for all points from a subset of X , whereas, in
general, the limit does not exist for all h1,h2 ∈ X .

4.2 Bounded Potential

It was shown in [Dashti, Law, et al. 2013] that in case of a Gaussian prior and under certain
conditions on the potential Φ the Onsager–Machlup functional of the posterior distribution
µy is indeed of the form (4.3) and that MAP estimates can be characterised as its minimisers.
We brie�y recapitulate these results here for a separable Hilbert space X , even though they are
valid for any separable Banach space.

Let the prior follow a centred Gaussian distribution µ0 = NQ with covariance operator
Q ∈ L(X ). We assume that Q is self-adjoint, positive de�nite and trace class. Then, by Theorem
2.4, the space of admissible shifts is given by the Cameron–Martin space E := R(Q 1

2 ) of µ0,
which we equip with the norm ‖h‖E := ‖Q− 1

2h‖X .
We make the following assumptions on the potential Φ.

Assumption 4.3. (i) For every ε > 0, there is an M = M(ε) ∈ R, such that for all u ∈ X ,

Φ(u) ≥ M − ε ‖u‖2X .

(ii) Φ is bounded from above on bounded sets, i.e., for every r > 0, there exists K = K(r ) > 0,
such that for all u ∈ Br (0), we have

Φ(u) ≤ K .

(iii) Φ is Lipschitz continuous on bounded sets, i.e., for every r > 0, there exists L = L(r ) > 0,
such that for all u,v ∈ Br (0), we have

|Φ(u) − Φ(v)| ≤ L ‖u −v ‖X .
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4.3 Unbounded Potential

These assumptions are, for instance, satis�ed for the potential ΦN resulting from the heat
equation with �nite-dimensional data and Gaussian noise, see Section 3.3 in [Dashti and Stuart
2017]. The following theorem yields the Onsager–Machlup functional of µy and show that it
has a minimiser.

Theorem 4.4 ([Dashti, Law, et al. 2013, Thm. 3.2]). If Φ satis�es Assumption 4.3, then I : X →
R := R ∪ {∞},

I (u) :=
{
Φ(u) + 1

2 ‖u‖2E if u ∈ E,
∞ if u ∈ X \ E,

is the Onsager–Machlup functional of µy .

The second term R(u) := 1
2 ‖u‖2E of the functional I can be interpreted as a generalised

logarithmic prior density, since R is the Onsager–Machlup functional of the prior distribution
µ0 by Corollary 2.6.

Theorem 4.5 ([Dashti and Stuart 2017, Cor. 1]). If Φ satis�es Assumption 4.3 (i) and (iii) and
µy (X ) = 1, then there exists ū ∈ E such that

I (ū) = inf{I (u) : u ∈ E}.

The main result of [Dashti, Law, et al. 2013] now shows that a point û ∈ X is a minimiser of
the Onsager–Machlup functional of µy if and only if it is a MAP estimate.

Theorem 4.6 ([Dashti, Law, et al. 2013, Thm. 3.5]). Suppose that Assumption 4.3 (ii) and (iii)
hold. Assume also that there exists anM ∈ R such that Φ(u) ≥ M for any u ∈ X .

(i) Let zδ = arg maxz∈X µy (Bδ (z)). There is a z̄ ∈ E and a subsequence of {zδ }δ>0 which
converges to z̄ strongly in X .

(ii) The limit z̄ is a MAP estimate and a minimiser of I .

Corollary 4.7 ([Dashti, Law, et al. 2013, Cor. 3.10]). Under the conditions of Theorem 4.6, we
have the following.

(i) Any MAP estimate, given by De�nition 4.1, minimises the Onsager–Machlup functional I .

(ii) Any z∗ ∈ E which minimises the Onsager–Machlup functional I is a MAP estimate for the
measure µy given by (4.1).

4.3 Unbounded Potential

As we will see in Section 5.4, the heat equation with Laplacian noise leads to a potential Φ that
is even globally Lipschitz continuous, but not bounded from below, as required in Theorem 4.6.
Motivated by this, we will show that a variational characterisation of MAP estimates is possible
without this assumption in case that Φ is globally Lipschitz continuous.
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Assumption 4.8. The function Φ is Lipschitz continuous, i.e., there exists an L > 0, such that

|Φ(u) − Φ(v)| ≤ L‖u −v ‖X for all u,v ∈ X .
We �rst note that this assumption implies the previous assumptions on Φ.

Lemma 4.9. If Φ is Lipschitz continuous, then it satis�es Assumption 4.3.

Proof. By the Lipschitz continuity of Φ,

Φ(u) + ε ‖u‖2X ≥ Φ(0) − L‖u‖ + ε ‖u‖2X = Φ(0) + ε
(
‖u‖X −

L

ε

)
‖u‖X

holds for all ε > 0 and u ∈ X . Now the minimum of the function f : R→ R, f (t) = ε(t − L
ε )t is

attained in L
2ε , so that for given ε > 0 condition (i) is satis�ed with

M := Φ(0) + f

(
L

2ε

)
= Φ(0) − L2

4ε .

Condition (ii) is satis�ed with K := Lr by the Lipschitz continuity of Φ, as

Φ(u) ≤ L‖u‖X ≤ Lr = K

for all u ∈ Br (0). Condition (iii) is trivially satis�ed. �

We proceed similar as in the proof of Theorem 4.6 and Corollary 4.7. For this, we require
a series of Lemmas about small ball probabilities under the Gaussian prior measure µ0. The
following two Lemmas are valid for centred Gaussian measures on a separable Banach space X .

Lemma 4.10 ([Dashti, Law, et al. 2013, Lemma 3.6]). Let ε > 0. Then we have

µ0(Bε (u))
µ0(Bε (0)) ≤ e

a1
2 ε

2
e−

a1
2 ( ‖u ‖X−ε )2

for all u ∈ X and a constant a1 independent of z and ε .

Lemma 4.11 ([Dashti, Law, et al. 2013, Lemma 3.7]). Suppose that ū < E, {uε }ε>0 ⊂ X and that
uεn converges weakly to ū in X for {εn}n∈N ⊂ (0,∞) with εn → 0. Then for any δ > 0, there exists
n ∈ N such that

µ0(Bεn (uεn ))
µ0(Bεn (0))

< δ .

Lemma 4.12. Let u ∈ X and ε > 0. For all n ∈ N and x ∈ X de�ne the projections Pn : X 7→ Rn ,

Pnx := ((x,φ1)X , . . . , (x,φn))T .
Moreover, for every n ∈ N let An be the cylindrical set

An := {x ∈ X : Pnx ∈ Bε (Pnu)},
where Bε (Pnu) := {x ∈ Rn : ‖x − Pnu‖2 < ε} denotes an open ball in Rn . Then for every δ > 0
there exists an N ∈ N such that

µ0(Bε (u) 4 An) ≤ δ for n ≥ N ,

where 4 denotes the symmetric di�erence.
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Proof. First, we note that µ0(Bε (u)) = µ0(Bε (u)) and

µ0({x ∈ X : Pnx ∈ Bε (Pnu)}) = µ0(An) = µ0(An) for all n ∈ N.

Next, we show that the sets An decrease to Bε (u). It can easily be seen that A1 ⊃ A2 ⊃ . . .
holds and that Bε (u) ⊂ An for all n ∈ N. In order to see that

⋂∞
n=1 An = Bε (u), we consider a

point x ∈ X \ Bε (u). Then, ρ := ‖x − u‖2 − ε2 > 0 and we can choose a K ∈ N such that

‖PKx − PKu‖22 =
K∑
k=1
|(x − u,φk )X |2 ≥ ‖x − u‖2 −

ρ

2 = ε
2 +

ρ

2 > ε
2.

This shows that PKx < Bε (PKu). Therefore, x < AK and in particular x <
⋂∞

n=1 An .
As a probability measure, µ0 is upper semicontinuous by [Klenke 2014, Thm. 1.36], so that

µ0(An) → µ0(Bε (u)) as n →∞.

For every δ > 0, this allows us to choose an N ∈ N such that

µ0(Bε (u) 4 An) = µ0(An \ Bε (u)) = µ0(An) − µ0(Bε (u)) ≤ δ for n ≥ N . �

The following statement is a generalisation of Lemma 3.9 in [Dashti, Law, et al. 2013].

Lemma 4.13. Suppose that {uεn }n∈N ⊂ X converges weakly but not strongly to ū ∈ E for
{εn}n∈N ⊂ (0,∞) with εn → 0. Then for every δ > 0, there is an n ∈ N such that

µ0(Bεn (uεn ))
µ0(Bεn (0))

≤ δ .

Proof. Let δ > 0. Let {φk }k ∈N be an orthonormal basis of X consisting of eigenvectors of Q , let
{λk }k ∈N be the associated eigenvalues in descending order and de�ne ak B 1

λk
for all k ∈ N.

Furthermore, we de�ne uk := (u,φk )X and

Pku B (u1,u2, . . . ,uk )T

for all u ∈ X and k ∈ N. For the measure µ0,m := µ0 ◦ P−1
m on Rm ,

µ0,m(M) = Cm

∫
M
e−

1
2 (a1x 2

1 +· · ·+amx 2
m)dx

holds for all M ∈ B(Rm) by [Bogachev 1998, Prop. 1.2.2], where Cm = ((2π )m
∏m

k=1 λk )−1/2.
Since uεn converges weakly and not strongly to ū, we have

lim inf
n→∞

uεnX > ‖ū‖X .
Therefore, n0 ∈ N and c > 0 exist such thatuεn2

X ≥ ‖ū‖2X + c for all n ≥ n0.
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We choose A > 0 such that e− c
2

36 A
2 ≤ δ

2 and K ∈ N such that ak > A2 for all k ≥ K . Form ≥ K
and n ∈ N we consider

µ0,m(Bεn (0)) = Cm

∫
Bεn (0)

e−
1
2 (a1x 2

1 +· · ·+amx 2
m)dx

= Cm

∫
Bεn (0)

e−
1
2A

2(x 2
K+1+· · ·+x 2

m)

· e− 1
2 (a1x 2

1 +· · ·+aKx 2
K+(aK+1−A2)x 2

K+1+· · ·+(am−A2)x 2
m)dx

=
Cm

Ĉm

∫
Bεn (0)

e−
1
2A

2(x 2
K+1+· · ·+x 2

m)µ̂0,m(dx)

≥ Cm

Ĉm
e−

1
2A

2εn 2
µ̂0,m(Bεn (0)),

where
µ̂0,m(M) B Ĉm

∫
M
e−

1
2 (a1x 2

1 +· · ·+aKx 2
K+(aK+1−A2)x 2

K+1+· · ·+(am−A2)x 2
m)dx

for all M ∈ B(Rm). Note that µ̂0,m is a centred Gaussian measure. The weak convergence
implies (uεn ,φk )X → (ū,φk )X for all k ∈ N. Therefore, we can choose n1 ≥ n0 such that for all
n ≥ n1,

K∑
k=1

((uεn ,φk )2X − (ū,φk )2X ) ≤ c

3 ,

and consequently

∞∑
k=K+1

(uεn ,φk )2X = ‖uεn ‖2X −
K∑
k=1
(uεn ,φk )2X ≥ ‖ū‖2X + c −

K∑
k=1
(uεn ,φk )2X

= c +
K∑
k=1

((ū,φk )2X − (uεn ,φk )2X )
+

∞∑
k=K+1

(ū,φk )2X ≥
2
3c .

Finally, we choose n ≥ n1 such that εn ≤ c2

36 and ρ > 0 such that(
δ

2 + 1
)
ρ ≤ δ

2 µ0(Bεn (0)).

By Lemma 4.12, there exists anm0 ≥ K for the balls Bεn (0) and Bεn (uεn ) such that the cylindrical
sets

A0 B P−1
m (Bεn (Pm0))) and Au = P−1

m (Bεn (Pmuεn ))
satisfy µ0(Bεn (0) 4 A0) < ρ and µ0(Bεn (uεn ) 4 Au ) < ρ for allm > m0. Note that here, Bε (Pmu)
denotes an open ball in Rm for ε > 0 and u ∈ X . It follows that

µ0(Bεn (uεn )) ≤ µ0,m(Bεn (Pmuεn )) + ρ
and

µ0,m(Bεn (Pm0)) ≤ µ0(Bεn (0)) + ρ.
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In a last step, we choosem ≥ m0 such that
m∑

k=K+1
(uεn ,φk )2X ≥

c

3 .

By Andersons’s inequality (see Theorem 2.8.10 in [Bogachev 1998]), we have

µ̂0,m(Bεn (Pmuεn )) ≤ µ̂0,m(Bεn (0)).

By the choice of n and A, this leads to

µ0,m(Bεn (Pmuεn )) =
Cm

Ĉm

∫
Bεn (Pmuεn )

e−
1
2A

2(x 2
K+1+· · ·+x 2

m)µ̂0,m(dx)

≤ Cm

Ĉm
e−

1
2A

2( c3 −εn)2 µ̂0,m(Bεn (Pmuεn ))

≤ Cm

Ĉm
e
− 1

2A
2
(
c2
9 −2εn

)
e−

1
2A

2ε2
n µ̂0,m(Bεn (0))

≤ e−
c2
36 A

2
µ0,m(Bεn (0)) ≤

δ

2 µ0,m(Bεn (0)).

Consequently, by the choice ofm0 and ρ we have

µ0(Bεn (uεn )) ≤
δ

2
(
µ0(Bεn (0)) + ρ

)
+ ρ =

δ

2 µ0(Bεn (0)) +
(
δ

2 + 1
)
ρ

≤ δ

2 µ0(Bεn (0)) +
δ

2 µ0(Bεn (0)) = δµ0(Bεn (0)). �

The proof of the following lemma was kindly provided by Masoumeh Dashti (personal
communication, 3 July 2017).

Lemma 4.14. Let εn > 0 for all n ∈ N and εn → 0 as n → ∞. Assume that {un}n∈N ⊂ X
converges towards ū ∈ E with respect to ‖·‖X . Then

lim sup
n→∞

µ0(Bεn (un))
µ0(Bεn (ū))

≤ 1.

Proof. First note that Z = Q(X ) is dense in E = Q
1
2 (X ), and that for every w ∈ Z the linear

functional WQ−1/2w = (Q−1w, ·)X is continuous. Now, by the Cameron-Martin theorem and
Anderson’s inequality,

µ0(Bεn (un)) =
∫
Bεn (un−w )

exp
(
−‖w ‖2E +WQ−

1
2 w
(v)

)
µ0(dv)

≤ e−
1
2 ‖w ‖2E sup

v ∈Bεn (un−w )

{
exp((Q−1w,v)X )

}
µ0(Bεn (un −w))

≤ e−
1
2 ‖w ‖2E sup

v ∈Bεn (un−w )

{
exp((Q−1w,v)X )

}
µ0(Bεn (0))
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holds for all w ∈ Z and n ∈ N. On the other hand, the symmetry of Bεn (0) implies

µ0(Bεn (ū)) = e−
1
2 ‖ū ‖2E

∫
Bεn (0)

exp(W
Q−

1
2 ū
(v))µ0(dv)

= e−
1
2 ‖ū ‖2E

∫
Bεn (0)

1
2

(
exp(W

Q−
1
2 ū
(v)) + exp(−W

Q−
1
2 ū
(v))

)
µ0(dv)

≥ e−
1
2 ‖ū ‖2E µ0(Bεn (0)).

Using the continuity of (Q−1w, ·)X we obtain

lim sup
n→∞

µ0(Bεn (un))
µ0(Bεn (ū))

≤ e
1
2 ‖ū ‖2E− 1

2 ‖w ‖2E lim sup
n→∞

{
sup

v ∈Bεn (un−w )
exp((Q−1w,v)X )

}
= e

1
2 ‖ū ‖2E− 1

2 ‖w ‖2E exp((Q−1w, ū −w)X )
= e

1
2 ‖ū ‖2E− 1

2 ‖w ‖2E exp((w, ū −w)E )

for all w ∈ Z . In particular, if we consider a sequence {w j }j ∈N ⊂ Z with w j → ū in E as j →∞,
the previous estimate leads to

lim sup
n→∞

µ0(Bεn (un))
µ0(Bεn (ū))

≤ 1. �

Now we are able to prove the main results of this chapter.

Theorem 4.15. For every ε > 0 let uε ∈ X be a maximiser of u 7→ µy (Bε (u)), i.e.,

µy (Bε (uε )) = max
u ∈X

µy (Bε (u)).

If Φ is Lipschitz continuous, then the following holds true:

(i) For every positive sequence {εn}n∈N with εn → 0, the sequence {uεn }n∈N contains a subse-
quence that converges in X towards some ū ∈ E.

(ii) Every cluster point ū ∈ X of {uεn }n∈N satis�es

lim
n→∞

µy (Bεn (ū))
µy (Bεn (uεn ))

= 1

and minimises the Onsager–Machlup functional of µy .

(iii) Every cluster point ū ∈ X of {uεn }n∈N is a MAP estimate.

Proof. We proceed along the lines of the proof of Theorem 3.5 in [Dashti, Law, et al. 2013].
Without loss of generality, we may assume that Φ(0) = 0, because adding a constant to Φ is
absorbed by the normalisation constant Z , while the measure µy remains the same.

Ad (i): First of all, we show that {uεn }n∈N is bounded in X . Then

|Φ(u)| = |Φ(u) − Φ(0)| ≤ L‖u‖X
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4.3 Unbounded Potential

for allu ∈ X , where L denotes the Lipschitz constant of Φ. From this we obtain, using Anderson’s
inequality, that

µy (Bε (uε )) = max
u ∈E

∫
Bε (u)

µy (dv) = max
u ∈E

∫
Bε (u)

1
Z
e−Φ(v)µ0(dv)

≥ 1
Z

∫
Bε (0)

e−Φ(v)µ0(dv) ≥ 1
Z

∫
Bε (0)

e−L ‖v ‖X µ0(dv)

≥ 1
Z
e−Lεµ0(Bε (0))

with Z =
∫
X exp(−Φ(v))µ0(dv) as before. On the other hand,

µy (Bε (u)) =
∫
Bε (u)

1
Z
e−Φ(v)µ0(dv) ≤ 1

Z

∫
Bε (u)

eL ‖v ‖X µ0(dv)

≤ 1
Z
eL(‖u ‖X+ε )µ0(Bε (u))

holds for all u ∈ X . Altogether, this yields

µ0(Bε (uε )) ≥ Ze−L( ‖uε ‖X+ε )µy (Bε (uε )) ≥ e−L( ‖uε ‖X+2ε )µ0(Bε (0))

for all ε > 0. However, Lemma 4.10 says that there is an a1 > 0 such that

µ0(Bε (uε ))
µ0(Bε (0)) ≤ e−

a1
2 (‖uε ‖2X−2ε)

for all ε > 0. Assuming that {uεn }n∈N is unbounded, i.e., that there is a subsequence, again
denoted by {uεn }n∈N, with ‖uεn ‖X →∞ as n →∞, leads to a contradiction, because

a1
2

(‖uεn ‖2 − 2εn
) − L (‖uεn ‖ + 2εn

)
=

(a1
2 ‖uεn ‖ − L

)
‖uεn ‖ − 2

(a1
2 + L

)
εn →∞

as n →∞, which implies

e−L(‖uεn ‖X+2εn) > e
− a1

2

(
‖uεn ‖2

X−2εn
)

for su�ciently large n. So {uεn }n∈N is bounded and therefore contains a subsequence, again
denoted by {uεn }n∈N, which converges weakly towards some ū ∈ X as n →∞.

Now, we show that ū ∈ E. By de�nition of uε and the boundedness of {uε }ε>0 we have

1 ≤ µy (Bε (uε ))
µy (Bε (0)) =

∫
Bε (uε ) e

−Φ(v)µ0(dv)∫
Bε (0) e

−Φ(v)µ0(dv)
≤ eL( ‖uε ‖X+ε )

e−Lε
µ0(Bε (uε ))
µ0(Bε (0))

= eL( ‖uε ‖X+2ε ) µ0(Bε (uε ))
µ0(Bε (0)) ≤ eL(R+2ε1) µ0(Bε (uε ))

µ0(Bε (0)) (4.4)
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for an R > 0 and all 0 < ε ≤ ε1. If we assume that ū < E, then Lemma 4.11 tells us that there is
an n ∈ N such that µ0(Bεn (uεn ))/µ0(Bεn (0)) ≤ 1

2e
−L(R+2ε1) and consequently

µy (Bε (uεn ))
µy (Bεn (0))

≤ 1
2 ,

which poses a contradiction. So ū ∈ E.
Next, we show that uεn converges strongly in X . Suppose it does not. Then Lemma 4.13

applies and yields

lim inf
n→∞

µ0(Bεn (uεn ))
µ0(Bεn (0))

= 0,

which is contradictory to (4.4). So the subsequence {uεn }n∈N does indeed converge strongly to
ū ∈ E.

Ad (ii): Let {uεn }n∈N denote the subsequence that converges towards the cluster point ū ∈ X .
First, we show that

lim
n→∞

µy (Bεn (ū))
µy (Bεn (uεn ))

= 1.

By de�nition of uε and the Lipschitz continuity of Φ we have

1 ≤ µy (Bε (uε ))
µy (Bε (ū)) = eΦ(ū)−Φ(uε )

∫
Bε (uε ) e

Φ(uε )−Φ(v)µ0(dv)∫
Bε (ū) e

Φ(ū)−Φ(v)µ0(dv)

≤ eL ‖uε−ū ‖X e2Lε µ0(Bε (uε ))
µ0(Bε (ū)) ,

for all ε > 0 and consequently, by the convergence uεn → ū and Lemma 4.14,

1 ≤ lim inf
n→∞

µy (Bεn (uεn ))
µy (Bεn (ū))

≤ lim sup
n→∞

µy (Bεn (uεn ))
µy (Bεn (ū))

≤ lim sup
n→∞

µ0(Bεn (uεn ))
µ0(Bεn (ū))

≤ 1.

Next we show that ū minimises the Onsager–Machlup functional I of µy . By Theorem 4.5 a
minimiser u∗ ∈ E of I exists. If we suppose that ū was not a minimiser of I , then I (ū) − I (u∗) > 0,
and thus

1 ≤ lim
n→∞

µy (Bεn (uεn ))
µy (Bεn (u∗))

= lim
n→∞

µy (Bεn (uεn ))
µy (Bεn (ū))

lim
n→∞

µy (Bεn (ū))
µy (Bεn (u∗))

= 1 exp(I (u∗) − I (ū)) < 1,

by the de�nition of uε and Theorem 4.4, which poses a contradiction.
Ad (iii): It remains to show that ū is a mode of µy , i.e., that for every positive sequence
{δn}n∈N with δn → 0 we have

lim
n→∞

µy (Bδn (ū))
µy (Bδn (uδn ))

= 1. (4.5)
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4.3 Unbounded Potential

To this end, we choose an arbitrary subsequence of {δn}n∈N, again denoted by {δn}n∈N. Then,
by (i), there exists a subsubsequence, again denoted by {δn}n∈N, such that uδn → ũ for some
ũ ∈ E. Moreover, by (ii), the limit ũ minimises I and satis�es

lim
n→∞

µy (Bδn (ũ))
µy (Bδn (uδn ))

= 1.

Since ū minimises I as well by (ii), this implies

lim
n→∞

µy (Bδn (ū))
µy (Bδn (uδn ))

= lim
n→∞

µy (Bδn (ū))
µy (Bδn (ũ))

lim
n→∞

µy (Bδn (ũ))
µy (Bδn (uδn ))

= exp(I (ũ) − I (ū))1 = 1

for the subsubsequence {δn}n∈N by Theorem 4.4. Now (4.5) follows for the original sequence
{δn}n∈N from a subsequence-subsequence argument. �

Corollary 4.16. If Φ is Lipschitz continuous, then ū ∈ E is a MAP estimate if and only if it
minimises the Onsager–Machlup functional I of µy .

Proof. Let û be a mode of µy . By Theorem 4.15 ū is also a mode, so that

lim
ε→0

µy (Bε (û))
µy (Bε (ū)) = lim

ε→0

µy (Bε (û))
µy (Bε (uε )) lim

ε→0

µy (Bε (uε ))
µy (Bε (ū)) = 1.

And because Φ is Lipschitz continuous, we have

µy (Bε (û))
µy (Bε (ū)) = eΦ(ū)−Φ(û)

∫
Bε (û) e

Φ(û)−Φ(v)µ0(dv)∫
Bε (ū) e

Φ(ū)−Φ(v)µ0(dv)
≤ eL ‖û−ū ‖X e2Lε

∫
Bε (û) µ0(dv)∫
Bε (ū) µ0(dv)

.

This implies û ∈ E, as otherwise Lemma 4.11 leads to

1 = lim inf
ε→0

µy (Bε (û))
µy (Bε (ū)) ≤ eL ‖û−ū ‖X lim inf

ε→0

µ0(Bε (û))
µ0(Bε (ū)) = 0,

a contradiction. Now Theorem 4.4 yields

1 = lim
ε→0

µy (Bε (û))
µy (Bε (ū)) = exp(I (ū) − I (û)),

and consequently I (ū) = I (û).
Conversely, let u∗ be a minimiser of I . Since ū from Theorem 4.15 is also a minimiser and a

mode, Theorem 4.4 tells us that

lim
ε→0

µy (Bε (u∗))
µy (Bε (uε )) = lim

ε→0

µy (Bε (u∗))
µy (Bε (ū)) lim

ε→0

µy (Bε (ū))
µy (Bε (uε ))

= exp(I (ū) − I (u∗))1 = 1. �
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5 A Severely Ill-posed Linear Problem with
Laplacian Noise

In this chapter we will study a generalised form of the inverse heat equation in a Bayesian
setting. Roughly speaking, we will consider the operator equation

y = Ku + η

with additive Laplacian noise η, a centred Gaussian prior u and a linear operator K between
two separable Hilbert spaces X and Y whose eigenvalues λk decay in the order of exp(−pk 2

d )
for some p > 0 and d ∈ N. We will determine the conditional distribution of the unknown u
given the data y via Bayesian inference as described in Chapter 1. This problem was studied in
[Dashti and Stuart 2017] with Gaussian instead of Laplacian noise.

We will proceed as follows. First we will give some background on Laplace-like operators,
their functional calculus and Hilbert scales. Then, we will state the considered problem setting
in detail and point out the connection to the inverse heat equation. Subsequently, we will derive
the posterior distribution, determine the CM and MAP estimators and study the consistency of
the MAP estimator.

5.1 Laplace-like Operators

5.1.1 Definition and Basic Properties

We will use real powers of a Laplace-like operator to model the smoothness of both the noise η
and the prior u in terms of the Hilbert scale it induces. Let A be a linear operator in a separable
Hilbert space X . We make the following assumptions on A:

Assumption 5.1. (i) The operator A is densely de�ned, i.e., its domain D(A) is dense in X ,
and A is invertible.

(ii) A is self-adjoint, i.e.,

D(A) = D(A∗) := {y ∈ X : x 7→ (Ax,y)X is continuous on D(A)}

and
(Au,v)X = (u,Av)X for all u,v ∈ D(A).

(iii) There exists an orthonormal basis {φk }k ∈N of X consisting of eigenvectors of A, i.e.,

Aφk = αkφk for all k ∈ N.
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

(iv) The eigenvalues {αk }k ∈N are positive, ordered to be non-decreasing and there are C+ ≥
C− > 0 and d ∈ N such that

C−k
2
d ≤ αk ≤ C+k

2
d for all k ∈ N.

We call operators that satisfy Assumption 5.1 Laplace-like operators. It follows from As-
sumption 5.1 (iv) that A is unbounded, but as a self-adjoint operator, A is at least closed, see
[Werner 2007, Thm. VII.2.4]. In the following two lemmas, we show that, without loss of gen-
erality, we can weaken Assumptions 5.1 (i) and (ii). In Assumption 5.1 (ii), we may replace the
self-adjointness of A by symmetry, i.e. we can drop the requirement D(A) = D(A∗), and in
Assumption 5.1 (i), the invertibility of A can be replaced by surjectivity (see Corollary 5.4 below).

Proposition 5.2. Let A be a densely de�ned operator in X that satis�es Assumptions 5.1 (iii) and
(iv). If, in addition, A is symmetric, i.e.,

(Ax,y)X = (x,Ay)X for all x,y ∈ D(A)

then the spectral decomposition

Ax =
∞∑
k=1

αk (x,φk )Xφk

holds for all x ∈ D(A) and A is injective.

Proof. Since {φk }k ∈N is an orthonormal basis of X by Assumption 5.1 (iii), we can decompose
Ax ∈ X for every x ∈ D(A) into

Ax =
∞∑
k=1
(Ax,φk )Xφk .

Now the symmetry of A together with the fact that {φk }k ∈N are eigenvectors of A yields

Ax =
∞∑
k=1
(x,Aφk )X φk =

∞∑
k=1

αk (x,φk )X φk for all x ∈ D(A).

We also obtain

‖Ax ‖2X =
∞∑
k=1

��(Ax,φk )X ��2 = ∞∑
k=1

α2
k

��(x,φk )X ��2 for all x ∈ D(A). (5.1)

Now injectivity follows from Assumption 5.1 (iv), as

‖Ax ‖2X ≥ α2
1

∞∑
k=1

��(x,φk )X ��2 ≥ C2
− ‖x ‖2X (5.2)

for all x ∈ D(A). �

44



5.1 Laplace-like Operators

Proposition 5.3. Let A be a densely de�ned, symmetric operator in X that satis�es Assumptions
5.1 (iii) and (iv). If, in addition, A is surjective then A is continuously invertible,

D(A) = X2 :=
{
x ∈ X :

∞∑
k=1

α2
k |(x,φk )X |2 < ∞

}
and A is self-adjoint.

Proof. By Proposition 5.2, A is injective and hence invertible. Moreover, the inverse A−1 is
continuous by equation (5.2).

We have D(A) ⊆ X2 by equation (5.1). Now we show that D(A) ⊇ X2. For every x ∈ X2 we
have

y :=
∞∑
k=1

αk (x,φk )Xφk ∈ X .

However,

y = Az =
∞∑
k=1

αk (z,φk )Xφk

for some z ∈ D(A) by the surjectivity of A and Proposition 5.2. This implies x = z ∈ D(A),
since {φk }k ∈N is an orthonormal basis of X and αk > 0 for all k ∈ N.

Finally, we show that D(A) ⊇ D(A∗) (the inclusion D(A) ⊆ D(A∗) holds by the symmetry
of A). Let y ∈ D(A∗) and set

Pnz :=
n∑
k=1
(z,φk )Xφk

for all n ∈ N and z ∈ X . Then Pnz ∈ X2 = D(A) for all n ∈ N and z ∈ X and Pnz → z as n →∞.
Moreover, Pn is symmetric, because {φk }k ∈N is an orthonormal basis of X and APnx = PnAx
for all x ∈ D(A) by Proposition 5.2. Now

(x, PnA∗y)X = (Pnx,A∗y)X = (APnx,y)X
= (PnAx,y)X = (Ax, Pny)X = (x,APny)X

for all x ∈ D(A) by de�nition of the adjoint operator A∗. As D(A) is dense in X , this implies

PnA
∗y = APny =

n∑
k=1

αk (y,φk )Xφk

for all n ∈ N, and consequently

A∗y = lim
n→∞ PnA

∗y =
∞∑
k=1

αk (y,φk )Xφk .

This shows that y ∈ X2 = D(A), as
∞∑
k=1

α2
k |(y,φk )X |2 = ‖A∗y ‖2 < ∞. �
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Corollary 5.4. Every densely de�ned, symmetric, surjective operator A in X that satis�es As-
sumptions 5.1 (iii) and (iv) is Laplace-like.

Proof. This follows immediatley from Propositions 5.2 and 5.3. �

Example 5.5. Let Ω be a bounded, open subset of Rd with C∞ boundary ∂Ω and let

∆ =
d∑
j=1

∂

∂x j

denote the (weak) Laplace operator on H 2(Ω). We use Corollary 5.4 to show that A = −∆ is a
Laplace-like operator in L2(Ω) if its domain is chosen as D(A) := H 2(Ω) ∩ H 1

0(Ω).
First of all, A is densely de�ned in L2(Ω), since C∞c (Ω), the space of smooth functions on Ω

with compact support, is dense in L2(Ω) andC∞c (Ω) ⊂ H 2(Ω) ∩H 1
0(Ω). We show that, moreover,

A is surjective. Theorem 2.2.2.3 in [Grisvard 2011] states that for every f ∈ L2(Ω) there exists a
unique u ∈ H 2(Ω) such that {

−∆u = f in Ω,

γu = 0 on ∂Ω,

where γ denotes the trace operator. Furthermore, for u ∈ H 1(Ω) we have u ∈ H 1
0(Ω) if and only

if γu = 0 by Corollary 1.5.1.6 in [Grisvard 2011]. This yields the existence of au ∈ H 2(Ω)∩H 1
0(Ω)

with Au = f . Note that surjectivity also holds for any convex bounded open set Ω ⊂ Rd , this
follows from [Grisvard 2011, Thm. 3.2.1.2].
A is symmetric, since

(−∆u,v)L2 =

∫
Ω
−∆uv dx =

∫
Ω
(∇u,∇v)Rd dx

=

∫
Ω
−u∆v dx = (u,−∆v)L2

for all u,v ∈ H 2(Ω) ∩ H 1
0(Ω), where ∇u = ( ∂u∂x1

, . . . , ∂u
∂xd
)T for all u ∈ H 1(Ω).

Next, we show that A satis�es Assumptions 5.1 (iii) and (iv). By Theorem 6.5.1 in [Evans 1998],
which holds for any bounded open set Ω ⊂ Rd , each eigenvalue of −∆ is real, the spectrum of
−∆ is given by

Σ = {λk }∞k=1,

where each eigenvalue is repeated according to its multiplicity,

0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . ,
and

λk →∞ as k →∞.
Moreover, there exists an orthonormal basis {φk }∞k=1 of L2(Ω), where for all k ∈ N, φk ∈ H 1

0(U )
is an eigenfunction corresponding to λk :{

−∆φk = λkφk in U ,

φk = 0 on ∂U .
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Finally, Weyl’s asymptotic formula

λk � 4π
(

1
Γ(d/2 + 1)vol(Ω)

)2/d
k

2
d

(see Theorem 8.16 and Remark 8.17 in [Roe 1998]) provides an estimate for the eigenvalues that
yields λk � k2/d , i.e., there exist C+ ≥ C− > 0 such that

C−k
2
d ≤ λk ≤ C+k

2
d for all k ∈ N.

5.1.2 Functional Calculus

In order to de�ne real powers of a Laplace-like operator A as well as exp(−tA), t ≥ 0, we brie�y
introduce the functional calculus for self-adjoint operators as described in [Engl, Hanke, and
Neubauer 1996, Section 2.2].

Proposition 5.6 ([Engl, Hanke, and Neubauer 1996, Prop. 2.14]). Let A be a self-adjoint operator
in a Hilbert space X . Then there exists a unique spectral family {Eλ}λ∈R, called the spectral
decomposition of A, such that

D(A) =
{
x ∈ X :

∫ ∞

−∞
λ2d ‖Eλx ‖2 < ∞

}
and

Ax =

∫ ∞

−∞
λdEλx for all x ∈ D(A).

We have already seen that the spectral decomposition of A simpli�es to

Au =
∞∑
k=1

αk (u,φk )Xφk for all u ∈ D(A).

So, the unique spectral family of A simply consists of the orthogonal projections Eλ , given by

Eλu =
∑
k ∈N
αk<λ

(u,φk )Xφk for all u ∈ D(A).

De�nition 5.7 ([Engl, Hanke, and Neubauer 1996, Def. 2.15]). Let A be a self-adjoint operator
in a Hilbert space X with spectral family {Eλ}λ∈R. Moreover, letM0 denote the set of all real
functions measurable with respect to the measure d ‖Eλx ‖2 for all x ∈ X . Then for all f ∈ M0
the operator f (A) is de�ned by

f (A)x =
∫ ∞

−∞
f (λ)dEλx for all x ∈ D(f (A)),

where
D(f (A)) =

{
x ∈ X :

∫ ∞

−∞
f (λ)2d ‖Eλx ‖2 < ∞

}
.
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Note that in particularM0 contains all piecewise continuous functions. We can now express
fractional powers of A with s ∈ R as

Asu =
∞∑
k=1

α sk (u,φk )X φk for all u ∈ D(As ),

where

D(As ) =
{
u ∈ X :

∞∑
k=1

α2s
k

��(u,φk )X ��2 < ∞}
.

Proposition 5.8. For every t ≥ 0, exp(−tA) is a continuous linear operator on X .

Proof. For �xed t ≥ 0 the real function exp(−t ·) is continuous and hence inM0. This allows us
to de�ne exp(−At) in X by means of the functional calculus as

exp(−At)u =
∞∑
k=1

e−αk t (u,φk )Xφk

for all u ∈ D(exp(−At)). Now D(exp(−At)) = X , because

∞∑
k=1

e−2αk t
��(u,φk )X ��2 ≤ ∞∑

k=1

��(u,φk )X ��2 = ‖u‖2X < ∞
for all u ∈ X . Moreover, exp(−At) is continuous, because

‖exp(−At)u‖2X =
∞∑
k=1

e−2αk t |(u,φk )X |2 ≤ ‖u‖2

for all u ∈ X . �

Lemma 5.9. For every t ≥ 0 and h ≥ −t , R(exp(−tA)) ⊆ D(exp(−hA)).

Proof. Let u ∈ R(exp(−tA)). Then there exists w ∈ X with u = e−tAw . Now u ∈ D(exp(−hA)),
because ∞∑

k=1
e−2hαk |(u,φk )X |2 =

∞∑
k=1

e−2(t+h)αk |(w,φk )X |2 ≤ ‖w ‖2X < ∞. �

5.1.3 Hilbert Scales

Now we can de�ne the Hilbert scale induced by a Laplace-like operator A as in [Engl, Hanke,
and Neubauer 1996, Section 8.4]. To this end, we note that A is an unbounded densely de�ned
self-adjoint strictly positive operator in X . We consider the set

M =
∞⋂
k=0
D(Ak ).
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5.1 Laplace-like Operators

M is dense in X and it follows by spectral theory that As is de�ned onM for all s ∈ R and that

M =
⋂
s ∈R
D(As ).

InM, we introduce for all s ∈ R the inner products and norms

(u,v)Xs :=
(
A

s
2u,A

s
2v

)
X ,

‖u‖Xs :=
A s

2u

X ,

respectively, for all u,v ∈ M. Now, H s is de�ned as the completion ofM with respect to
the norm ‖·‖Xs and (H s )s ∈R is called the Hilbert scale induced by A. For each s ∈ R, H s by
de�nition is a Hilbert space. It is, however, by now only equipped with the norm[{un}n∈N]Xs Hs := lim

n→∞ ‖un ‖Xs ,

for any Cauchy sequence {un}n∈N ⊂ M, where [u]Xs denotes the equivalence class of u with
respect to the equivalence relation de�ned by

{un}n∈N ∼ {vn}n∈N ⇔ lim
n→∞ ‖un −vn ‖Xs = 0

for all Cauchy sequences {un}n∈N, {vn}n∈N inM. We will �x this later and show that at least
for positive s the H s -norm coincides with the original Xs -norm. The following proposition
summarises some key properties of Hilbert scales that we will use throughout the rest of this
chapter.

Proposition 5.10 ([Engl, Hanke, and Neubauer 1996, Prop. 2.16]). (i) The spaceH t is densely
and continuously embedded inH s for all s < t .

(ii) The operatorA
t−s

2 , de�ned onM, has a unique extension toH t for all s, t ∈ R. This extension,
again denoted by A

t−s
2 , is an isomorphism from H t to H s . Moreover, A

t−s
2 is self-adjoint

and strictly positive inH s for t > s .

(iii) At−s = AtA−s holds for all s, t ∈ R, and in particular (As )−1 = A−s .

(iv) For all s ≥ 0,H s is isometrically isomorphic to D(A s
2 ) andH−s is isometrically isomorphic

to (H s )∗, the dual space ofH s .

In the following, we will identifyH s for s ≥ 0 with the subspaces

Xs := D(A s
2 ) =

{
u ∈ X :

∞∑
k=1

α sk
��(u,φk )X ��2 < ∞}

of X by assigning the equivalence class of the series

{Eαnu}n∈N =
{

n∑
k=1
(u,φk )X φk

}
n∈N
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

with limit u to any function u ∈ D(A s
2 ). This way, we can extend the de�nition of the Xs -norm

to D(A s
2 ) and it coincides with theH s -norm, since[{Eαnu}n∈N]

Xs
2

Hs
= lim

n→∞
Eαnu2

Xs = lim
n→∞

A s
2 Eαnu

2

X

= lim
n→∞

 n∑
k=1

α
s
2
k (u,φk )X φk

2

X

=

∞∑
k=1

α sk
��(u,φk )X ��2

=

∞∑
k=1

���(u,α s
2
k φk

)
X

���2 = ∞∑
k=1

���(A s
2u,φk

)
X

���2
=

A s
2u

2

X
= ‖u‖2Xs

for all u ∈ D(A s
2 ).

Lemma 5.11. The set {α−s/2k φk }k ∈N = {A−s/2φk }k ∈N is an orthonormal basis in Xs .

Proof. {A−s/2φk }k ∈N is an orthonormal system in Xs , because(
A−

s
2φk ,A

− s2φ j
)
Xs
=

(
φk ,φ j

)
X for all k, j ∈ N

by de�nition of the Xs -norm and the orthonormality of {φk }k ∈N. Moreover,

∞∑
k=1
(u,α−

s
2

k φk )Xsα−
s
2

k φk =
∞∑
k=1
(A s

2u,φk )Xα−
s
2

k φk =
∞∑
k=1
(u,A s

2φk )Xα−
s
2

k φk

=

∞∑
k=1
(u,φk )Xφk = u

for all u ∈ Xs , because {φk }k ∈N is an orthonormal basis for X . �

Proposition 5.12. For every s ≥ 0 and t ≥ 0, A−t : Xs → Xs is continuous.

Proof. By Proposition 5.10, A−t is an isomorphism from Xs to Xs+2t and Xs+2t is continuously
embedded in Xs . So A−t is well-de�ned from Xs to Xs and continuous. �

Lemma 5.13. For β, s ∈ R with 0 ≤ s < β − d
2 the operator As−β : Xs → Xs is trace class.

Proof. By Proposition 5.12, As−β is continuous from Xs to Xs . As {α−s/2k φk }k ∈N is an orthonor-
mal basis of Xs by Lemma 5.11 and αk ≥ C−k2/d for all k ∈ N by Assumption 5.1, the trace of
As−β computes as

TrAs−β =
∞∑
k=1

(
As−βα−

s
2

k φk ,α
− s2
k φk

)
Xs
=

∞∑
k=1

α
s−β
k ≤ Cs−β

−
∞∑
k=1

k
2(s−β )
d .

This series converges because 2(s−β )
d < −1 by assumption. �
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5.2 Problem Setting

Lemma 5.14. For γ > 0 the function д: (0,∞) → R, t 7→ д(t) = tγ e−t attains its maximum at
t = γ , increases monotonically for 0 < t ≤ γ and decreases monotonically for t ≥ γ . Moreover,

0 < tγ e−t ≤ γγ e−γ for all t > 0.

For γ ≤ 0, in contrast, д decreases monotonically.

Proof. First of all, д(t) = tγ e−t > 0 for all t > 0. Di�erentiating leads to

д′(t) = γ tγ−1e−t − tγ e−t = (γ − t) tγ−1e−t

for all t > 0. As tγ−1e−t > 0 for all t > 0, we have д′(t) = 0 if and only if t = γ , д′(t) > 0 for
0 < t < γ and д′(t) < 0 for t > γ . So, for γ > 0, д attains its maximum at t = γ , which yields
the �rst estimate. For γ ≤ 0, it follows that д decreases monotonically. �

Lemma 5.15. Let s > 0. Then R(exp(−tA)) ⊆ Xs for all t > 0 and there is a C = C(s) > 0, such
that

‖exp(−tA)u‖Xs ≤ Ct−
s
2 ‖u‖X for all t > 0.

Proof. First, we consider

∞∑
k=1

α sk |(e−tAu,φk )X |2 = t−s
∞∑
k=1
(αkt)se−2αk t |(u,φk )X |2.

By Lemma 5.14, the sequence (αkt)se−2αk t is bounded from above by C := sse−s , so that

∞∑
k=1

α sk |(e−tAu,φk )X |2 ≤ t−sC‖u‖2X < ∞.

This implies e−tAu ∈ Xs and proves the estimate. �

5.2 Problem Se�ing

Let A be a Laplace-like operator in X and let (Xt )t ∈R denote the Hilbert scale induced by A. We
consider the linear operator equation

y = e−Au + η. (5.3)

for the unknown u, the noise η and the data y . We assume that u ∈ X and η ∈ Xs for some s ≥ 0.
More precisely, we make the following assumptions on the probability distributions of u and η:

• The prior u ∼ Nr 2A−τ has a centred Gaussian distribution on X with r > 0 and τ > d
2 .

• The noise η ∼ Lb2As−β has a centred Laplacian distribution onXs withb > 0 and β > s+ d
2

and is independent of the prior u. Here we de�ne Lb2As−β using the orthonormal basis
{α−s/2k φk }k ∈N of Xs .

51



5 A Severely Ill-posed Linear Problem with Laplacian Noise

Now we want to determine the regular conditional distribution of u given y . Note that by the
choice of τ and β and Lemma 5.13, both covariance operators are trace class.

The reason why we chose η to have the covariance operator b2As−β rather than b2A−β is that
we want the Laplacian distribution µ of η on Xs to satisfy∫

Xs
(η,φk )X (η,φ j )X µ(dη) = (b2A−βφk ,φ j )X

for all k, j ∈ N, independent of s . This is achieved by choosing µ := Lb2As−β , because

(u,φk )X = (A
s
2u,A−

s
2φk )X = (u,A−sφk )Xs

for all u ∈ Xs , s ≥ 0, and k ∈ N, and consequently,∫
Xs
(η,φk )X (η,φ j )XLb2As−β (dη) =

∫
Xs
(η,A−sφk )Xs (η,A−sφ j )XsLb2As−β (dη)

= (b2As−βA−sφk ,A−sφ j )Xs = (b2A−βφk ,φ j )X
by de�nition of the covariance operator.

5.3 Derivation from the Heat Equation

Now we go into the connection between the operator equation (5.3) and the heat equation.
More precisely, we will derive equation (5.3) from the following abstract Cauchy problem.

Let A be a Laplace-like operator in X . Given initial data u ∈ X we want to �nd a solution v to
the initial value problem 

dv(t)
dt
= −Av(t) for t > 0,

v(0) = u,
(5.4)

in the sense of a continuous function v: [0,∞) → X that is continuously di�erentiable for all
t > 0 and satis�es v(t) ∈ D(A) for all t > 0.

Example 5.16. We obtain the classical heat equation on a bounded, open domain Ω ⊂ Rd

with C∞ boundary by choosing A := −∆ to be the (weak) Laplace operator in X := L2(Ω) and
D(A) := H 2(Ω) ∩ H 1

0(Ω).
We will to show that v(t) := e−tAu is the unique solution to the initial value problem (5.4).

Proposition 5.17. The familyT (t) := exp(−tA), t ≥ 0, forms a strongly continuous semigroup of
bounded linear operators on X .

Proof. By Proposition 5.8, exp(−tA) is a continuous linear operator on X for every t ≥ 0. The
semigroup properties can be shown using the spectral decomposition of exp(−At). We have

T (0) = exp(−A · 0) = IdX

and
T (t + s) = exp(−A(t + s)) = exp(−At) exp(−As) = T (t)T (s)
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5.3 Derivation from the Heat Equation

for all t, s ≥ 0. It remains to show that

lim
t→0
t ≥0

T (t)x = x for all x ∈ X .

Let ε > 0. For every t ≥ 0 we have

T (t)x − x = e−tAx − x =
∞∑
k=1

(
e−tαk − 1

) (x,φk )Xφk .
Now choose N ∈ N, such that

∑∞
k=N+1 |(x,φk )X |2 ≤ ε2

2 . Next, choose t0 > 0, such that

t0αk ≤
ε√

2‖x ‖X
.

Note that 1 − e−t ≤ min{t, 1} for all t ≥ 0. Consequently, for all t ∈ [0, t0] we havex − e−tAx2
X =

∞∑
k=1

(
1 − e−tαk )2 |(x,φk )X |2

≤ ε2

2‖x ‖2X

(
N∑
k=1
|(x,φk )X |2

)
+
ε2

2 ≤ ε
2. �

Proposition 5.18. (i) For every u ∈ X the function (0,∞) → X , t 7→ exp(−tA)u is di�eren-
tiable, and

lim
h→0

t+h>0,h,0

exp(−(t + h)A)u − exp(−tA)u
h

= −A exp(−tA)u .

(ii) For all u ∈ D(A), it is, moreover, di�erentiable in t = 0, and

lim
h→0
h>0

exp(−hA)u − u
h

= −Au .

Proof. We �rst show the second statement. Let u ∈ D(A) and consider for �xed h > 0 the
di�erence

e−Ahu − u
h

− (−Au) =
∞∑
k=1

(
e−αkh − 1

h
+ αk

)
(u,φk )Xφk

=

∞∑
k=1

(
1 − e−αkh − 1

−αkh

)
αk (u,φk )Xφk .

For a given ε > 0 we choose N ∈ N, such that

∞∑
k=N+1

α2
k |(u,φk )X |2 <

ε2

2
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

holds. By the de�ning property of the exponential function,

lim
x→0

ex − 1
x
= 1.

This allows us to choose t0 > 0, such that for all h ∈ (0, t0] and k ∈ {1, . . . ,N }(
1 − e−αkh − 1

−αkh

)2

<
1

‖Au‖2X
ε2

2

is satis�ed. Furthermore,
0 ≤ e−x − 1

−x ≤ 1

for x > 0. Consequently, we havee−Ahu − uh
− (−Au)

2

X
=

∞∑
k=1

(
1 − e−αkh − 1

−αkh

)2

α2
k |(u,φk )X |2

≤ 1
‖Au‖2X

ε2

2

(
N∑
k=1

α2
k |(u,φk )X |2

)
+
ε2

2 ≤ ε
2

for all h ∈ (0, t0].
Now we show the �rst statement. Let u ∈ X and t > 0. Then v := e−tAu ∈ X2 = D(A) by

Lemma 5.15 and Proposition 5.10 and v ∈ D(e−hA) for all h ≥ −t by Lemma 5.9. We proceed
similarly as before. We have

e−(t+h)Au − e−tAu
h

− (−Ae−tAu) = e−hAv −v
h

− (−Av)

=

∞∑
k=1

(
1 − e−αkh − 1

−αkh

)
αk (v,φk )Xφk

for all h ≥ −t , h , 0. For a given ε > 0 we choose N ∈ N, such that
∑∞

k=N+1 α
2
k |(u,φk )X |2 < ε2

2 .
Then we choose h0 ∈ (0, t], such that(

1 − e−αkh − 1
−αkh

)2

<
1

‖Av ‖2X
ε2

2

holds for all h ∈ [−h0,h0] \ {0} and k ∈ {1, . . . ,N }. This yieldse−hAv −vh
− (−Av)

2

X
=

∞∑
k=1

(
1 − e−αkh − 1

−αkh

)2

α2
k |(v,φk )X |2

≤ 1
‖Av ‖2X

ε2

2

(
N∑
k=1

α2
k |(v,φk )X |2

)
+
ε2

2 ≤ ε
2.

for all h ∈ [−h0,h0] \ {0}. �
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5.4 Posterior Distribution

Corollary 5.19. The family T (t) = exp(−tA), t ≥ 0, is a di�erentiable semigroup and −A is its
in�nitesimal generator.

Proposition 5.20. For every u ∈ X there is a unique solution v of the initial value problem (5.4)
given by v(t) = exp(−tA)u for all t ≥ 0.

Proof. As −A is the in�nitesimal generator of the di�erentiable semigroup T (t) = exp(−tA),
t ≥ 0, by Corollary 5.19, Theorem 4.1.5 in [Pazy 1983] yields that (5.4) has a unique solution v
for every u ∈ X and that it is given by v(t) = T (t)u. �

Now we assume that for given u ∈ X only a measurement y of the solution v(t) = e−tAu at
some �xed time t > 0 is available and that, moreover, this measurement is perturbed by additive
noise η ∈ Xs . This leads to the operator equation

y = v(t) + η = e−tAu + η.

By Lemma 5.15, e−tAu ∈ Xs , so that also y ∈ Xs . Without loss of generality we may now
assume that t = 1 by considering the initial value problem for the scaled operator tA instead of
A. Clearly, if A is a Laplace-like operator, then so is tA. This way we arrive at equation (5.3).

5.4 Posterior Distribution

Now we determine the posterior distribution for the inverse problem described in Section 5.2.
We will show that introducing a prior and considering the problem from a Bayesian point of
view acts as a regularisation and resolves its initial ill-posedness. Subsequently, we will show
that the posterior distribution is also stable with regard to approximations of the log-likelihood.

5.4.1 Derivation

We want to use Theorem 1.3 with the noise distribution ν = Lb2As−β as a reference measure to
obtain the posterior distribution µy in terms of its density with respect to the prior distribution
µ0 = Nr 2A−τ . To this end we need to show that all translates νe−Au = Le−Au ,b2As−β of the noise
distribution are absolutely continuous with respect to Lb2As−β . Then the regular conditional
distribution of y , given u, is given by (u,V ) 7→ Le−Au ,b2As−β (V ) as described in Section 1.4.

Proposition 5.21. For all u ∈ X , the measures Le−Au ,b2As−β and Lb2As−β are equivalent and

dLe−Au ,b2As−β

dLb2As−β
(y) = exp(−Φ(u,y))

for Lb2As−β -almost all y ∈ Xs , where

Φ(u,y) :=
√

2
∞∑
k=1

|(y,φk )X − e−αk (u,φk )X | − |(y,φk )X |
bα
−β/2
k

(5.5)

for all u ∈ X and y ∈ Xs .
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Proof. Theorem 3.10, applied with H = Xs , a = e−Au and Q = b2As−β , tells us that Le−Au ,b2As−β

and Lb2As−β are equivalent if and only if e−Au ∈ bA s−β
2 (Xs ). This is indeed the case for allu ∈ X ,

since A
s−β

2 (Xs ) = Xβ by Proposition 5.10 and e−Au ∈ Xβ for all u ∈ X by Lemma 5.15. From
Theorem 3.10 we also obtain the density

dLe−Au ,b2As−β

dLb2As−β
(y) = exp

(
−
√

2
∞∑
k=1

(���(b−1A
β−s

2 (y − e−Au),α−
s
2

k φk )Xs
��� − ���(b−1A

β−s
2 y,α

− s2
k φk )Xs

���))
for Lb2As−β -almost all y ∈ Xs . Note that here the orthonormal basis ek = α−s/2k φk , k ∈ N, of Xs

and the Xs -inner product were used. From Proposition 5.10 and the self-adjointness of e−A we
obtain that for all u ∈ X ,

dLe−Au ,b2As−β

dLb2As−β
(y) = exp

(
−
√

2
∞∑
k=1

b−1
(���(y − e−Au,A β

2 φk )X
��� − ���(y,A β

2 φk )X
���))

= exp
(
−
√

2
∞∑
k=1

��(y,φk )X − (u, e−Aφk )X �� − |(y,φk )X |
bα
−β/2
k

)
= exp(−Φ(u,y))

Lb2As−β -almost surely. �

Corollary 5.22. The regular conditional distribution of y given u is given by

(u,V ) 7→ Le−Au ,b2As−β (V ).

Proof. This follows from Proposition 1.4. �

We put some basic properties of the function Φ on record.

Proposition 5.23. The function Φ: X × Xs → R de�ned by (5.5) is continuous and for every
y ∈ Xs , u 7→ Φ(u,y) is Lipschitz continuous with a Lipschitz constant independent of y .

Proof. We �rst show the Lipschitz continuity of Φ(·,y) with Lipschitz constant

L :=
√

2
b
ββe−β (TrA−β ) 1

2

independent of y ∈ Xs . Here we use the notation xk B (x,φk )X for all k ∈ N and x ∈ X . For
u,v ∈ X we estimate

|Φ(u,y) − Φ(v,y)| ≤
√

2
b

∞∑
k=1

α
β
2
k

��|yk − e−αkuk | − |yk − e−αkvk |��
≤
√

2
b

∞∑
k=1

α
− β2
k α

β
k e
−αk |uk −vk |
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5.4 Posterior Distribution

using the triangle inequality. The sequence {α βk e−αk }k ∈N is bounded from above by ββe−β by
Lemma 5.14 and the operator A−β is trace class by Lemma 5.13. We further estimate

|Φ(u,y) − Φ(v,y)| ≤
√

2
b
ββe−β

( ∞∑
k=1

α
−β
k

) 1
2
( ∞∑
k=1
|uk −vk |2

) 1
2

=

√
2
b
ββe−β (TrA−β ) 1

2 ‖u −v ‖X = L‖u −v ‖X

using the Cauchy–Schwarz inequality.
Now we show the continuity in y . Let u ∈ X and ε > 0. Here we estimate

|Φ(u,y) − Φ(u, z)| =
�����√2
b

∞∑
k=1

α
β
2
k (|yk − e−αkuk | − |yk | − |zk − e−αkuk | + |zk |)

�����
≤
√

2
b

N∑
k=1

2α
β
2
k |yk − zk | +

√
2
b

∞∑
k=N+1

2α
β
2
k |e−αkuk |

for all y, z ∈ Xs and N ∈ N. As the series
∑∞

k=1 α
β
2
k e
−αk |uk | converges, we can choose N = N (u)

such that √
2
b

∞∑
k=N+1

2α
β
2
k e
−αk |uk | ≤

ε

2 .

Next, we choose

δ B
b

2
√

2

(
N∑
k=1

α
β−s
k

)− 1
2
ε

2 .

This way, we have

√
2
b

N∑
k=1

2α
β
2
k |yk − zk | ≤

2
√

2
b

(
N∑
k=1

α
β−s
k

) 1
2
(
N∑
k=1

α sk |yk − zk |2
) 1

2

≤ ε

2δ ‖y − z‖Xs ≤
ε

2

for all y, z ∈ Xs with ‖y − z‖Xs ≤ δ , and consequently

|Φ(u,y) − Φ(u, z)| ≤ ε

2 +
ε

2 = ε .

The continuity of Φ now follows from the continuity in u and y and the triangle inequality. �

Corollary 5.24. The function (u,y) 7→ exp(Φ(u,y)) is B(X ) × B(Xs )-measurable.

Proof. By Proposition 5.23, exp(Φ(u,y)) is continuous and hence B(X )×B(Xs )-measurable. �

Moreover, u 7→ Φ(u,y) is convex for every y ∈ Xs , but not strictly convex. The following
example shows that in our case u 7→ Φ(u,y) is not necessarily bounded from below.
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Example 5.25. We can constructy ∈ Xs and a sequence {un}n∈N ∈ X such thatΦ(un,y) → −∞
as follows. Set

y B
∞∑
k=1

α
− s2
k

1
k
φk and un B

n∑
k=1

eαkα
− s2
k

1
k
φk

for all n ∈ N. Now consider

Φ(un,y) =
√

2
b

n∑
k=1

α
β
2
k

(
0 − α−

s
2

k
1
k

)
.

Letm ∈ N be large enough such that αk ≥ 1 for all k ≥ m. As β − s > 0, it follows that

Φ(un,y) ≤ −
√

2
b

n∑
k=m

α
β−s

2
k

1
k
≤ −
√

2
b

n∑
k=m

1
k

for all n ≥ m. However, −∑n
k=m

1
k → −∞ as n → ∞ and hence also Φ(un,y) → −∞. As

‖un ‖X →∞ this example also shows that Φ(·,y) is not coercive.

In contrast, the potential ΦN resulting from the heat equation with Gaussian noise is bounded
from below in u for �xed y ∈ Xs . Replacing the noise distribution Lb2As−β on Xs by NAs−β in
this setting leads to the potential ΦN : X × Xs → R,

ΦN(u,y) = 1
2

A β
2 e−Au

2

X
−

(
A
β
2 e−

A
2 y,A

β
2 e−

A
2 u

)
X
,

see Section 3.3 in [Dashti and Stuart 2017]. However, due to the quadratic term, the function
u 7→ ΦN(u,y) is not globally Lipschitz continuous for any �xed y ∈ Xs , but only Lipschitz
continuous on bounded sets.

Lemma 5.26. Let µ0 be a centred Gaussian meausure on X . Then for every C > 0, the function
u 7→ exp(C‖u‖X ) de�ned on X is µ0-integrable.

Proof. By Fernique’s theorem [Bogachev 1998, Thm 2.8.5], there exists α > 0 such that the
integral

∫
X exp(α ‖u‖2X )µ0(du) is �nite. Set R B C

α . Then the integral∫
X

exp (C‖u‖X ) µ0(du) ≤
∫
BR (0)

exp
(
C2

α

)
µ0(du) +

∫
X \BR (0)

exp
(
α ‖u‖2X

)
µ0(du)

is �nite as well. �

Proposition 5.27. The function u 7→ exp(−Φ(u,y)) isNr 2A−τ -integrable for all y ∈ Xs and there
exists a constant CZ > 0 such that∫

X
exp(−Φ(u,y))Nr 2A−τ (du) ≥ CZ for all y ∈ Xs .
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5.4 Posterior Distribution

Proof. We �rst show the integrability. Let y ∈ Xs be arbitrary. We use the Lipschitz continuity
of Φ(·,y), which holds by Proposition 5.23, to estimate∫

X
exp(−Φ(u,y))Nr 2A−τ (du) ≤ exp(−Φ(0,y))

∫
X

exp(L‖u‖X )Nr 2A−τ (du).

Now Φ(0,y) = 0 for all y ∈ Xs by de�nition of Φ and the integral on the right hand side is �nite
by Lemma 5.26.

Now we address the lower bound. By the Lipschitz continuity of Φ in u, the estimate∫
X

exp(−Φ(u,y))Nr 2A−τ (du) ≥
∫
X

exp(−L‖u‖X )Nr 2A−τ (du)

≥
∫
B1(0)

e−LNr 2A−τ (du) = e−LNr 2A−τ (B1(0)) =: CZ

holds for all y ∈ Xs . By Theorem 3.6.1 in [Bogachev 1998], the topological support of the
Gaussian measure Nr 2A−τ is given by the closure of its Cameron–Martin space R(A−τ /2) = Xτ .
Since Xτ is dense in X the topological support is the whole space X . As a consequence, all
balls in X have positive measure under Nr 2A−τ , which in turn implies that the constant CZ is
positive. �

With this knowledge we can apply Bayes’ formula.

Theorem 5.28. A regular conditional distribution (y,B) 7→ µy (B) ofu given y exists, the posterior
distribution µy is absolutely continuous with respect to the prior distribution Nr 2A−τ for every
y ∈ Xs and has the density

dµy

dNr 2A−τ
(u) = 1

Z (y) exp(−Φ(u,y)) Nr 2A−τ -almost surely, (5.6)

where

Φ(u,y) :=
√

2
∞∑
k=1

|(y,φk )X − e−αk (u,φk )X | − |(y,φk )X |
bα
−β/2
k

for all u ∈ X and y ∈ Xs and

Z (y) :=
∫
X

exp(−Φ(u,y))Nr 2A−τ (du) for all y ∈ Xs .

Proof. By Proposition 5.21 the measure Pu := Le−Au ,b2As−β is absolutely continuous with respect
to ν := Lb2As−β for all u ∈ X with the density y 7→ pu (y) := exp(−Φ(u,y)). The function
(u,y) 7→ pu (y) is measurable by Corollary 5.24 and Z (y) > 0 for all y ∈ Xs by Proposition 5.27.
Therefore we may apply Theorem 1.3, which yields the proposition. �
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

5.4.2 Stability

Now we show that Bayesian inference acts as a regularisation for the ill-posed operator equation
y = e−Au and stabilises the problem in the sense that small changes in the data y lead to small
changes in the posterior distribution µy . This means that introducing a prior and considering
the problem from a Bayesian point of view turns it into a well-posed problem.

We use the Hellinger distance as a metric to describe the di�erence between two probability
measures µ and µ ′ on a Hilbert space X . Let ν be a reference measure, such that both µ and µ ′
are absolutely continuous with respect to ν . Then the Hellinger distance is de�ned as

dHell(µ, µ ′) = ©« 1
2

∫
X

(√
dµ
dν −

√
dµ ′
dν

)2

dνª®¬
1
2

.

Lemma 5.29. Let {yn}n∈N be a sequence in Xs that converges towards y† ∈ Xs . Then both∫
X

��exp(−Φ(u,yn)) − exp(−Φ(u,y†))
��Nr 2A−τ (du) → 0

and ∫
X

����exp
(
− 1

2Φ(u,y
n)

)
− exp

(
− 1

2Φ(u,y
†)
)����2Nr 2A−τ (du) → 0

as n →∞.
Proof. We de�ne fn(u) B exp(−Φ(u,yn)), f (u) B exp(−Φ(u,y†)) and д(u) B exp(L‖u‖X )
for all u ∈ X and n ∈ N, where L > 0 denotes the joint Lipschitz constant of {Φ(·,y)}y ∈Xs .
For the sake of brevity we moreover set µ0 := Nr 2A−τ . For M ≥ 0, the restriction of the
exponential function to the inverval [−M,M] is Lipschitz continuous with Lipschitz constant
exp(M). Together with Proposition 5.23 this yields

| fn(u) − f (u)| =
��exp(−Φ(u,yn)) − exp(−Φ(u,y†))

��
≤ exp (L‖u‖X )

��Φ(u,yn) − Φ(u,y†)��
for allu ∈ X . So fn → f almost surely asn →∞ by Proposition 5.23, which implies convergence
in probability. Furthermore, { fn}n∈N is dominated by д, because, by Proposition 5.23,

| fn(u)| = exp (−Φ(u,yn)) ≤ exp (L‖u‖X ) = д(u)
holds for all u ∈ X and n ∈ N. This also ensures that fn ∈ L1(X , µ0) for all n ∈ N, as д ∈ L1(X , µ0)
by Lemma 5.26. Now Lebesgue’s dominated convergence theorem [Klenke 2014, Cor. 6.26]
yields that fn → f in L1(X , µ0) (convergence in mean), i.e.,∫

X
| fn(u) − f (u)| µ0(du) → 0,

and that { fn}n∈N = {| f
1
2
n |2}n∈N is uniformly integrable. As f

1
2
n ∈ L2(X , µ0) for all n ∈ N and

f
1
2
n → f

1
2 almost surely, Theorem 7.3 in [Klenke 2014] yields f

1
2
n → f

1
2 in L2(X , µ0) (convergence

in mean square), i.e. ∫
X

���fn(u) 1
2 − f (u) 1

2

���2 µ0(du) → 0. �
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5.4 Posterior Distribution

Theorem 5.30. Let {yn}n∈N be a sequence in Xs that converges towards y† ∈ Xs . Then the
associated posterior measures µy

n
converge towards µy

†
with respect to the Hellinger distance, i.e.,

dHell(µyn , µy †) → 0.

Proof. Again, we set µ0 := Nr 2A−τ . As both µy
n � µ0 and µy

† � µ0, we can express the
(squared) Hellinger distance as

dHell(µyn , µy †)2 = 1
2

∫
X

©«
√

dµyn

dµ0
−

√
dµy †

dµ0

ª®¬
2

dµ0

=
1
2

∫
X

(
1

Z (yn) 1
2

exp (−Φ(u,yn)) 1
2 − 1

Z (y†) 1
2

exp
(
−Φ(u,y†)

) 1
2

)2

µ0(du)

Now we abbreviate fn(u) B exp(−Φ(u,yn)), f (u) B exp(−Φ(u,y†)) as before and set

Zn B Z (yn) =
∫
X
fndµ0, Z B Z (y†) =

∫
X
f dµ0.

We use (a + b)2 ≤ 2a2 + 2b2 for a,b ∈ R to obtain

1
2
©« f

1
2
n

Z
1
2
n

− f
1
2

Z
1
2

ª®¬
2

=
1
2

(
1

Z
1
2
n

(
f

1
2
n − f

1
2
)
−

(
1

Z
1
2
n

+
1
Z

1
2

)
f

1
2

)2

≤ 1
Zn

(
f

1
2
n − f

1
2
)2
+

(
1

Z
1
2
n

+
1
Z

1
2

)2

f ,

which results in

dHell(µyn , µy †)2 = 1
Zn

∫
X

(
fn(u)

1
2 − f (u) 1

2
)2
µ0(du)

+

(
1

Z
1
2
n

− 1
Z

1
2

)2 ∫
X
f (u)µ0(du) C I1 + I2.

Now Lemma 5.29 implies that Zn − Z =
∫
X (fn − f )dµ0 → 0 and consequently,

I2 =

(
1

Z
1
2
n

− 1
Z

1
2

)2

Z → 0.

Moreover, Lemma 5.29 shows that I1 → 0 as well. �

By interpreting Theorem 5.30 appropriately, we can conclude that approximating the log-
likelihood Φ also results in small changes in the posterior distribution µy . For every N ∈ N let
PN denote the orthogonal projection onto the subspace span{φ1, . . . ,φN } ⊂ Xs , de�ned by

PNy B
N∑
k=1
(y,φk )X φk =

N∑
k=1

(
y,α

− s2
k φk

)
Xs
α
− s2
k φk for all y ∈ Xs .
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

We consider �nite approximations ΦN of the log-likelihood, de�ned by

ΦN (u,y) := Φ(u, PNy) =
√

2
b

N∑
k=1

α
β
2
k (|(y,φk )X − e−αk (u,φk )X | − |(y,φk )X |) .

for all N ∈ N, u ∈ X and y ∈ Xs . For every y ∈ Xs the sequence {yN }N ∈N, de�ned by
yN B PNy for all N ∈ N, converges towards y in Xs . Therefore Theorem 5.30 tells us that
dHell(µyN , µy ) → 0 as N →∞. We can, however, interpret µyN as the posterior distribution µN
resulting from an approximation of Φ instead of an approximation of y , since

dµyN

dNr 2A−τ
(u) = exp(−Φ(u,yN ))∫

X exp(−Φ(ũ,yN ))Nr 2A−τ (dũ)

=
exp(−ΦN (u,y))∫

X exp(−ΦN (ũ,y))Nr 2A−τ (dũ)
=: dµN

dNr 2A−τ
(u)

Nr 2A−τ -almost surely. This tells us that Bayesian inference is stable with respect to such changes
in the model.

We can also use the Hellinger distance to make statements about the closeness of expecta-
tions. For any function f ∈ L2(X , µy ) ∩ L2(X , µz ), a small Hellinger distance implies that the
expectations of f under µy and µz are close.

Lemma 5.31. For all f ∈ L2(X , µy ) ∩ L2(X , µz ) and y, z ∈ Xs we have��Eµy f (u) − Eµz f (u)�� ≤ 2
√

2
(
Eµ

y | f (u)|2 + Eµz | f (u)|2
) 1

2
dHell (µy , µz ) .

Proof. By means of the Cauchy-Schwarz inequality and (a + b)2 ≤ 2a2 + 2b2, which holds for
all a,b ∈ R, we compute��Eµy f (u) − Eµz f (u)�� = ����∫

X
f dµy −

∫
X
f dµz

���� = ����∫
X
f

(
dµy

dν −
dµz

dν

)
dν

����
=

�����∫X f

(√
dµy
dν +

√
dµz
dν

) (√
dµy
dν −

√
dµz
dν

)
dν

�����
≤
√

2 ©«
∫
X
| f |2

(√
dµy
dν +

√
dµz
dν

)2

dνª®¬
1
2

dHell (µy , µz )

≤ 2
√

2
(
Eµ

y | f (u)|2 + Eµz | f (u)|2
) 1

2
dHell (µy , µz ) �

5.5 Consistency of the Maximum A Posteriori Estimator

Here we determine the unique mode of the posterior distribution, use it in Subsection 5.5.1
to de�ne an estimator for the posterior, the MAP estimator, and consider its consistency in
a frequentist setting in Subsections 5.5.2 to 5.5.6. In Subsection 5.5.3, we establish an a priori
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5.5 Consistency of the Maximum A Posteriori Estimator

parameter choice strategy for which the MAP estimator is asymptotically unbiased, i.e., under
which its expectation converges towards a true solution, and, in Subsection 5.5.5, a convergence
rate for the bias in case that a source condition is satis�ed. Subsequently, we prove a convergence
rate for the mean squared error under a source condition and compare it with the optimal rate
in case of Gaussian noise in Subsection 5.5.6.

5.5.1 Derivation and Basic Properties

We apply the results from Chapter 4 to the posterior measure µy derived in Section 5.4. We
determine the Onsager–Machlup functional of µy and obtain the MAP estimator ûMAP by
minimising it.

The Cameron–Martin space of the Gaussian measureNr 2A−τ is given by 1
rA
−τ /2(X ), equipped

with the norm 1
r ‖A−τ /2·‖X . Using Proposition 5.10, we �nd that 1

rA
−τ /2(X ) = Xτ .

Theorem 5.32. For every y ∈ Xs the functional Iy : X → R := R ∪ {∞}, de�ned by

Iy (u) := Φ(u,y) + 1
2r 2 ‖u‖2Xτ (5.7)

=

√
2
b

∞∑
k=1

α
β
2
k (|(y,φk )X − e−αk (u,φk )X | − |(y,φk )X |) +

1
2r 2

∞∑
k=1

ατk |uk |2

for all u ∈ Xτ and Iy (u) = ∞ for u ∈ X \ Xτ is the Onsager–Machlup functional of µy .

Proof. Let y ∈ Xs . By Theorem 5.28, the density of the posterior distribution µy w.r.t. the prior
distribution Nr 2A−τ is given by (5.6). Φ is Lipschitz continuous in u by Proposition 5.23, so
that Assumption 4.3 is satis�ed by Lemma 4.9. Consequently, u 7→ Φ(u,y) + 1

2r 2 ‖u‖2Xτ is the
Onsager–Machlup functional of µy by Theorem 4.4. �

Corollary 5.33. Let y ∈ Xs . Then the functional Iy , de�ned by (5.7), has a minimiser ū ∈ Xτ
and every minimiser of Iy is a MAP estimate. Conversely, every MAP estimate minimises Iy .

Proof. By Theorem 5.28, the density of µy w.r.t.Nr 2A−τ is given by (5.6). Now Corollary 4.16 tells
us that the minimisers of Iy are precisely the MAP estimates for µy as Φ is Lipschitz continuous
in u by Proposition 5.23. �

Corollary 5.33 tells us in particular that every MAP estimate lies in Xτ . We express the
minimiser explicitly and show that it is unique.

Lemma 5.34. Let y ∈ Xs and let ū = ū(y) ∈ Xτ be a minimiser of Iy . Then ū =
∑∞

k=1 ūkφk ,
where

ūk = max
{
−r

2

b
Rk ,min

{
eαk (y,φk )X ,

r 2

b
Rk

}}
and

Rk :=
√

2α
β
2 −τ
k e−αk

for all k ∈ N. In particular, the minimiser ū of Iy is unique.
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Proof. For all k ∈ N and uk ∈ R, we de�ne

fk (uk ) =
1

2r 2α
τ
k |uk |2 +

√
2
b
α
β
2
k (|e−αkuk − (y,φk )X | − |(y,φk )X |) .

This way, Iy (u) = ∑∞
k=1 fk ((u,φk )X ). As a minimiser of Iy , ū satis�es

0 ≤ Iy (ū + tφk ) − Iy (ū) = fk ((ū,φk )X + t) − fk ((ū,φk )X )

for all t ∈ R and k ∈ N. Hence ūk := (ū,φk )X minimises fk for every k ∈ N.
Consider an arbitrary, �xed k ∈ N. The function fk is continuous on R and continuously

di�erentiable on R \ {eαk (y,φk )X } with

f ′k (uk ) =


1
r 2α

τ
kuk −

√
2
b α

β
2
k e
−αk if uk < eαk (y,φk )X ,

1
r 2α

τ
kuk +

√
2
b α

β
2
k e
−αk if uk > eαk (y,φk )X .

Set
Sk := r 2

b
Rk =

r 2

b

√
2α β/2−τk e−αk .

In case eαk (y,φk )X > Sk , ūk = Sk is the unique minimiser of fk , because f ′k (Sk ) = 0,

f ′k (uk ) < 0 for uk ∈ (−∞, Sk ), and
f ′k (uk ) > 0 for uk ∈ (Sk ,∞) \ {eαk (y,φk )}.

In case eαk (y,φk )X < −Sk , ūk = −Sk is the unique minimiser of fk , because f ′k (−Sk ) = 0,

f ′k (uk ) < 0 for uk ∈ (−∞,−Sk ) \ {eαk (y,φk )}, and
f ′k (uk ) > 0 for uk ∈ (−Sk ,∞).

Finally, in case eαk (y,φk ) ∈ [−Sk , Sk ],

f ′k (uk ) < 0 if uk < eαk (y,φk )X , and
f ′k (uk ) > 0 if uk > eαk (y,φk )X ,

so that the unique minimiser of fk is given by ūk = eαk (y,φk )X . �

By Corollary 5.33 and Lemma 5.34, Iy has a unique minimiser ū = ū(y) for every y ∈ Xs ,
which at the same time is a MAP estimate for µy . With this knowledge, we can de�ne a unique
MAP estimator.

De�nition 5.35. We de�ne the maximum a posteriori (MAP) estimator ûMAP: Xs → X by
assigning to every y ∈ Xs the respective MAP estimate ûMAP(y) := ū(y) for µy .

Equivalently, we can express ûMAP as

ûMAP(y) = arg min
u ∈Xτ

Iy (u) = arg min
u ∈Xτ

{
Φ(u,y) + 1

2r 2 ‖u‖2Xτ
}
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5.5 Consistency of the Maximum A Posteriori Estimator

for all y ∈ Xs . This means that the MAP estimator can be viewed as Tikhonov–Phillips
regularisation with disrepancy term Φ(u,y) and penalty term 1

2r 2 ‖u‖2Xs .
We can formally interpret Lemma 5.34 by reformulating the minimiser ū of Iy as

ū(y) = eAP r 2
b Q (y) for all y ∈ Xs ,

where PS denotes the metric projection onto S ⊂ Xs characterised by

‖PS (y) − y ‖Xs = inf
z∈S
‖z − y ‖Xs ,

and Q ⊂ Xs is the convex closed set

Q := {y ∈ Xs : (y,φk )X ≤ e−αkRk for all k ∈ N}.
So the MAP estimator acts on the data y by projecting it onto a hyperrectangle and then applying
the inverse of the forward operator e−A.

Next, we show that ûMAP is continuous, so that in particular a �nite dimensional approxima-
tion of the data leads to a close MAP estimate.

Lemma 5.36. The series ∞∑
k=1

R2
k =

∞∑
k=1

2α β−2τ
k e−2αk

converges.

Proof. By Lemma 5.14, α β−2τ
k e−αk ≤ (β − 2τ )β−2τ e2τ−β =: Cτ ,β . We de�ne the monotonically

decreasing dominating function κ 7→ e−C−κ
2
d on R and use it to estimate

∞∑
k=1

e−αk ≤
∞∑
k=1

e−C−k
2
d ≤

∫ ∞

0
e−C−κ

2
d dκ

=

∫ ∞

0
e−tC−

d
2−
d

2 t
d
2 −1dt = C−

d
2−
d

2 Γ
(
d

2

)
=: Cd ,

where we substituted t = C−κ2/d . We conclude the proof by combining these estimates to
∞∑
k=1

2α β−2τ
k e−2αk = 2

∞∑
k=1

(
α
β−2τ
k e−αk

)
e−αk ≤ 2Cτ ,βCd < ∞. �

Theorem 5.37. The MAP estimator ûMAP: Xs → X according to De�nition 5.35 is continuous.

Proof. Let ε > 0. By Lemma 5.34, we have

(ûMAP(y),φk )X = max
{
−r

2

b
Rk ,min

{
α
− s2
k eαk (y,α−

s
2

k φk )Xs ,
r 2

b
Rk

}}
for all k ∈ N, where Rk =

√
2α β/2−τk e−αk . We make the fundamental estimate

|(ûMAP(y),φk )X − (ûMAP(z),φk )X | ≤ min
{
α
− s2
k eαk

���(y,α− s2k φk )Xs − (z,α−
s
2

k φk )Xs
��� , 2r 2

b
Rk

}
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for all y, z ∈ Xs and k ∈ N, which leads to

‖ûMAP(y) − ûMAP(z)‖2X =
∞∑
k=1
|(ûMAP(y) − ûMAP(z),φk )X |2

≤
N∑
k=1

α−sk e2αk
���(y,α− s2k φk )Xs − (z,α−

s
2

k φk )Xs
���2 + ∞∑

k=N+1
2r

2

b
R2
k .

for all N ∈ N.
As

∑∞
k=1 R

2
k < ∞ by Lemma 5.36, we can choose N ∈ N large enough, such that

∞∑
k=N+1

2r
2

b
R2
k ≤

ε2

2 .

Next, we set M := maxk=1, ...,N α−s/2k eαk and choose δ := ε
2M . Since {α−s/2k φk }k ∈N is an or-

thonormal basis of Xs by Lemma 5.11, we arrive at

‖ûMAP(y) − ûMAP(z)‖2X ≤ M2‖y − z‖2Xs +
ε2

2 ≤
ε2

4 +
ε2

2 ≤ ε .

for all y, z ∈ Xs with ‖y − z‖Xs ≤ δ . �

Corollary 5.38. Let y ∈ Xs and set yN :=
∑N

k=1(y,φk )Xφk for all N ∈ N. Then

ûMAP(yN ) → ûMAP(y) as N →∞.

Proof. We verify that yN → y in Xs . This is indeed the case, because

yN =
N∑
k=1
(y,φk )Xφk =

N∑
k=1
(y,α−

s
2

k φk )Xsα−
s
2

k φk

and {α−s/2k φk }k ∈N is an orthonormal basis of Xs by Lemma 5.11. �

5.5.2 Frequentist Se�ing

Although we derived the MAP estimator from the Bayesian setting, i.e., from the posterior
distribution µy , we will consider its consistency in a frequentist setting. Instead of a prior
distribution we now assume that there is a deterministic true solution u† ∈ X and only the noise
η is stochastic with the same distribution as before. The data y = e−Au† + η is then a Laplacian
random variable with distribution

y ∼ Le−Au† ,b2As−β

on Xs .
We will study the MAP estimator ûMAP when it is applied to data with this distribution. In

this setting, ûMAP(y) itself is a random variable. In particular, we want to show that ûMAP(y)
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converges towards the true solution u† in some sense as b, and with it the variance of the noise,
tends to zero.

For every y ∈ Xs the MAP estimate ûMAP(y) is given as the minimiser of the functional
Iy (u) = Φ(u,y) + 1

2r 2 ‖u‖2Xτ by Corollary 5.33. We may, however, minimise a scaled and shifted
version of Iy instead, since multiplying a functional by a positive number and adding a constant
does not change its minimisers. We can considerΦ(u,y) as a discrepancy term and by multiplying
Iy by b we obtain a functional whose discrepancy term is independent of b. Additionally, we
add a constant to bIy , chosen in such a way that the discrepancy term is equal to zero for u = u†
and y = e−Au†. This leads to the new objective functional Jy : X → R,

Jy (u) := bIy (u) − bΦ(u†, e−Au†)

= bΦ(u,y) − bΦ(u†, e−Au†) + b

2r 2 ‖u‖2Xτ .

Again, Jy decomposes into a series,

Jy (u) =
√

2
∞∑
k=1

α
β
2
k

( |(y,φk )X − e−αk (u,φk )X | − |(y,φk )X | + |e−αk (u†,φk )X |)
+

b

2r 2

∞∑
k=1

ατk |uk |2 .

Now we set

Ψk (u,y) :=
√

2α
β
2
k

(
|(y,φk )X − e−αk (u,φk )X | − |(y,φk )X | + |e−αk (u†,φk )X |

)
and Ψ(u,y) :=

∑∞
k=1 Ψk (u,y) for all u ∈ X , y ∈ Xs and k ∈ N. This way,

Jy (u) = Ψ(u,y) + b

2r 2 ‖u‖2Xτ ,

and the new discrepancy term Ψ(u,y) does not depend on b. Moreover, Ψ(u†, ·) is nonnegative
and Ψ(u†, e−Au†) = 0.

The functional Jy can, up to a constant, be interpreted as Onsager–Machlup functional of the
posterior distribution resulting from unscaled Laplacian noise η̃ ∼ LA−β in combination with a
scaled Gaussian prior ũ ∼ Nr 2

b A−τ , and Ψ(ũ, ỹ) as the negative log-likelihood of the resulting
data ỹ given ũ.

5.5.3 Asymptotic Unbiasedness

First, we examine the convergence of the expectation E [ûMAP(y)] of the MAP estimator towards
the true solution u† as b → 0. To this end, we show that the expectation of the discrepancy
term Ψ(u†,y) converges to 0 and prove an inequality for the expectations of Ψ(ûMAP(y), e−Au†)
and Ψ(ûMAP(y),y). In a �rst step, we compute the mean and the variance of Ψ(u†,y).
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Lemma 5.39. Let u† ∈ X , b > 0 and y ∼ Le−Au† ,b2As−β . Then

E
[
Ψ(u†,y)] = b ∞∑

k=1

(
1 − exp

(
−ck
b

))
and

Var
(
Ψ(u†,y)

)
= b2

∞∑
k=1

(
4
(
1 − e−

ck
b − ck

b
e−

ck
b

)
−

(
1 − e−

ck
b

)2
)
,

where
ck :=

√
2α

β
2
k e
−αk ��(u†,φk )X �� for all k ∈ N.

Proof. Let ek := α−s/2k φk , k ∈ N, denote the orthonormal basis of Xs from Lemma 5.11. First, we
note that due to the independence of the components (y, ek )Xs of y , the summands Ψk (u†,y),
which can be written as

Ψk (u†,y) =
√

2α
β−s

2
k

(��(y, ek )Xs − (e−Au†, ek )Xs �� − |(y, ek )Xs | + ��(e−Au†, ek )Xs ��) ,
are independent, too. This allow us to write

E
[
Ψ(u†,y)] = E

[ ∞∑
k=1

Ψk (u†,y)
]
=

∞∑
k=1

E
[
Ψk (u†,y)

]
.

By construction of the Laplacian measure, each component (y, ek )Xs = pk ◦ y is distributed
according to

L(e−Au† ,ek )Xs ,b2α s−βk
= Le−Au† ,b2As−β ◦ p−1

k ,

the pushforward of Le−Au† ,b2As−β under the projection pk = (·, ek )Xs . We set

a := (e−Au†, ek )Xs , λ := b2α
s−β
k

and substitute x = (y, ek )Xs in order to compute

E
[
Ψk (u†,y)

]
=

∫
Xs

b

√
2
λ

(��(y, ek )Xs − a�� − ��(y, ek )Xs �� + |a |) Le−Au† ,b2As−β (dy)

=

∫
R

b

√
2
λ
(|x − a | − |x | + |a |) La ,λ(dx)

By substituting a by −a and x by −x in case that a < 0, we obtain

E
[
Ψk (u†,y)

]
=

∫
R

b

√
2
λ
(|x − |a | | − |x | + |a |) L |a |,λ(dx)

=

∫ 0

−∞
b

√
2
λ

2 |a | L |a |,λ(dx) +
∫ ∞

|a |
0L |a |,λ(dx)

+

∫ |a |

0
b

√
2
λ

2 (|a | − x) L |a |,λ(dx).
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The �rst integral computes as∫ 0

−∞
b

√
2
λ

2 |a | 1√
2λ

e−
√

2
λ ( |a |−x )dx = b

√
2
λ
|a |

∫ 0

−∞

√
2
λ
e−
√

2
λ ( |a |−x )dx

= b

√
2
λ
|a |

[
e−
√

2
λ ( |a |−x )

]0

−∞

= b

√
2
λ
|a | e−

√
2
λ |a | − 0.

The last integral computes as

b

√
2
λ

∫ |a |

0
(|a | − x)

√
2
λ
e−
√

2
λ ( |a |−x )dx

= b

√
2
λ

[
(|a | − x) e−

√
2
λ ( |a |−x )

] |a |
0
− b

√
2
λ

∫ |a |

0
(−1)e−

√
2
λ ( |a |−x )dx

= 0 − b
√

2
λ
|a | e−

√
2
λ |a | + b

[
e−
√

2
λ ( |a |−x )

] |a |
0

= −b
√

2
λ
|a | e−

√
2
λ |a | + b

(
1 − e−

√
2
λ |a |

)
.

We notice that√
2
λ
|a | = 1

b

√
2α

β−s
2

k

���(e−Au†, ek )Xs ��� = 1
b

√
2α

β
2
k e
−αk

���(u†,φk )
X

��� = ck
b
.

Summing up and resubstituting �nally results in

E
[
Ψk (u†,y)

]
= b

(
1 − e−

ck
b

)
.

Now we turn towards

E
[
Ψk (u†,y)2

]
=

∫
R

b2 2
λ
(|x − |a | | − |x | + |a |)2 L |a |,λ(dx)

=

∫ 0

−∞
b2 2
λ

4 |a |2 L |a |,λ(dx) +
∫ |a |

0
b2 2
λ

4 (x − |a |)2 L |a |,λ(dx).

Here the �rst integral computes as∫ 0

−∞
b2 8
λ
|a |2 1√

2λ
e−
√

2
λ ( |a |−x )dx = b2 8

λ
|a |2

[
1
2e
−
√

2
λ ( |a |−x )

] ����0
−∞
= b2 4

λ
|a |2 e−

√
2
λ |a |,
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and the second one as∫ |a |

0
b2 8
λ
(x − |a |)2 1√

2λ
e−
√

2
λ ( |a |−x )dx

= b2 8
λ

[
(x − |a |)2 1

2e
−
√

2
λ ( |a |−x )

] ���� |a |
0
−

∫ |a |

0
b2 8
λ
(x − |a |) e−

√
2
λ ( |a |−x )dx

= −b2 4
λ
|a |2 e−

√
2
λ |a | − 4b2

√
2
λ

[
(x − |a |) e−

√
2
λ ( |a |−x )

] ��� |a |
0

+

∫ |a |

0
4b2

√
2
λ
e−
√

2
λ ( |a |−x )dx

= −b2 4
λ
|a |2 e−

√
2
λ |a | − 4b2

√
2
λ
|a | e−

√
2
λ |a | + 4b2

(
1 − e−

√
2
λ |a |

)
.

Summing up and resubstituting yields

E
[
Ψk (u†,y)

]
= 4b2

(
1 − e−

√
2
λ |a | −

√
2
λ
|a | e−

√
2
λ |a |

)
= 4b2

(
1 − e−

ck
b − ck

b
e−

ck
b

)
.

With this, we can compute

Var
(
Ψk (u†,y)

)
= E

[
Ψk (u†,y)2

] − E [
Ψk (u†,y)

]2

= 4b2
(
1 − e−

ck
b − ck

b
e−

ck
b

)
− b2

(
1 − e−

ck
b

)2

Because the components (y, ek )Xs of y are independent, we can write

Var
(
Ψ(u†,y)

)
= Var

( ∞∑
k=1

Ψk (u†,y)
)
=

∞∑
k=1

Var
(
Ψk (u†,y)

)
= b2

∞∑
k=1

(
4
(
1 − e−

ck
b − ck

b
e−

ck
b

)
−

(
1 − e−

ck
b

)2
)
. �

Corollary 5.40. Under the assumptions of Lemma 5.39, we have

E
[
Ψk (u†,y)

] ≤ min{b, ck } for all k ∈ N,

where ck =
√

2α β/2k e−αk |(u†,φk )X |.
Proof. In the proof of Lemma 5.39 we saw that

E
[
Ψk (u†,y)

]
= b(1 − e−

ck
b ).

Now on the one hand, the expected value of each Ψk (u†,y) complies with the estimate

E
[
Ψk (u†,y)

] ≤ b,
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since 1 − e−ck /b ≤ 1 for all b > 0. On the other hand, the estimate 1 − e−x ≤ x for x ≥ 0 yields

E
[
Ψk (u†,y)

] ≤ b
ck
b
= ck . �

Next, we show that the expectation of Ψ(u†,y) converges in the order of δ if b tends to 0 in
the order of δ 1+ε for some ε > 0.

Lemma 5.41. Let u† ∈ X with ‖u†‖X ≤ ρ, b > 0, y ∼ Le−Au† ,b2As−β and δ > 0. For every ε > 0
there is a constant Cε = Cε (ε, ρ,d, β) > 0 such that

b ≤ Cε min
{
1, δ 1+ε }

implies
E

[
Ψ(u†,y)] ≤ δ .

Proof. Let ε > 0. The idea is to use Lemma 5.39, split up the expected value

E
[
Ψ(u†,y)] ≤ N∑

k=1
b

(
1 − e−

ck
b

)
+

∞∑
k=N+1

b
(
1 − e−

ck
b

)
≤ Nb +

∞∑
k=N+1

ck (5.8)

for some N ∈ N and estimate each summand either by b or by ck . Now we show that we
can let

∑∞
k=N+1 ck become arbitrary small by choosing N large enough. We estimate using the

Cauchy-Schwarz inequality and Assumption 5.1 (iv) that

∞∑
k=N+1

ck =
∞∑

k=N+1

√
2α

β
2
k e
−αk ��(u†,φk )X �� ≤ ( ∞∑

k=N+1
2α βk e

−2αk

) 1
2
( ∞∑
k=N+1

��(u†,φk )X ��2) 1
2

≤
( ∞∑
k=N+1

2Cβ
+k

2β
d e−2C−k

2
d

) 1
2 u†X

≤
( ∞∑
k=N+1

2Cβ
+ (2C−)−β

(
2C−k

2
d

)β
e−2C−k

2
d

) 1
2

ρ .

For N large enough we have 2C−k2/d ≥ 1 for k ≥ N + 1, so that

∞∑
k=N+1

ck ≤
( ∞∑
k=N+1

2Cβ
+ (2C−)−β

(
2C−k

2
d

) dβ e
e−2C−k

2
d

) 1
2

ρ,

where dβe := min{B ∈ Z : B ≥ β}. The exponential function satis�es the estimate ex > xM+B
(M+B)!

for all x ∈ R and M,B ∈ N. Hence, xBe−x ≤ (M + B)!x−M , and consequently,

∞∑
k=N+1

ck ≤
( ∞∑
k=N+1

2Cβ
+ (2C−)−β (dβe +M)! (2C−)−M k−

2M
d

) 1
2

ρ

=

(
2Cβ
+ (2C−)−(β+M ) (dβe +M)!

∞∑
k=N+1

k−
2M
d

) 1
2

ρ
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for all M ∈ N and N large enough. Since k 7→ k−
2M
d is monotonically decreasing, we can

estimate the remaining series by an integral,
∞∑

k=N+1
k−

2M
d ≤

∫ ∞

N
t−

2M
d dt =

(
2M
d
− 1

)
N 1− 2M

d ,

which leads to
∞∑

k=N+1
ck ≤

(
4Cβ
+ (2C−)−(β+M ) (dβe +M)!

(
M

d
− 1

2

)) 1
2
ρN −(Md − 1

2 ) =: CMρN
−(Md − 1

2 ).

Now we choose M ≥ d
( 1
ε +

1
2
)

to ensure

M

d
− 1

2 ≥
1
ε
> 0.

Then we achieve
∑∞

k=N+1 ck ≤ δ
2 by choosing(

2
δ
CMρ

) 1
M
d −

1
2 ≤ N ≤ 2

(
2
δ
CMρ

) 1
M
d −

1
2 .

Finally, we want to bound the �rst term Nb in (5.8) by δ
2 as well. By the choice of N and M , we

have
δ

2N ≥
δ

4

(
2
δ
CMρ

)− 1
M
d −

1
2
=

1
4 (2CMρ)

− 1
M
d −

1
2 δ

1+ 1
M
d −

1
2 = Cεδ

1+ 1
M
d −

1
2 ,

where Cε := 1
4 (2CMρ)

− 1
M
d −

1
2 . If δ > 1, then we use b ≤ Cε to get

Nb ≤ NCε ≤ NCεδ
1+ 1

M
d −

1
2 ≤ δ

2 .

If, on the other hand, δ ∈ (0, 1], we use b ≤ Cεδ
1+ε to get

Nb ≤ NCεδ
1+ε ≤ NCεδ

1+ 1
M
d −

1
2 ≤ δ

2 .

Finally, summing up yields

E
[
Ψ(u†,y)] ≤ Nb +

∞∑
k=N+1

ck ≤
δ

2 +
δ

2 = δ . �

We use the explicit representation of the MAP estimator from Lemma 5.34 to study the
expected values of Ψ(ûMAP(y),y) and Ψ(ûMAP(y), e−Au†).
Lemma 5.42. Let u† ∈ X , b > 0 and y ∼ Le−Au† ,b2As−β . Then

0 ≤ E
[
Ψ(ûMAP(y), e−Au†)

] ≤ E [Ψ(ûMAP(y),y)] .
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Proof. Set ū := ûMAP(y). As in the proof of Lemma 5.39, we write

E [Ψ(ū,y)] = E

[ ∞∑
k=1

Ψk (ū,y)
]
=

∞∑
k=1

E [Ψk (ū,y)]

and E[Ψ(ū, e−Au†)] = ∑∞
k=1 E[Ψk (ū, e−Au†)], respectively, and show that 0 ≤ E[Ψk (ū, e−Au†)] ≤

E [Ψk (ū,y)] for all k ∈ N. For a �xed k ∈ N we set

a := (e−Au†, ek )Xs , λ B b2α
s−β
k ,

where ek := α−s/2k φk . A change of variables results in

E[Ψk (ū,y)] =
∫
Xs

b

√
2
λ

(��(y, ek )Xs − (e−Aū, ek )Xs �� − ��(y, ek )Xs �� + |a |) Le−Au† ,b2As−β (dy)

=

∫
R

b

√
2
λ

(���x − α s
2
k e
−αk (ū,φk )X

��� − |x | + |a |) La ,λ(dx) (5.9)

By Lemma 5.34, we have

α
s
2
k e
−αk (ū,φk )X = α

s
2
k e
−αk max

{
−
√

2r
2

b
α
β
2 −τ
k e−αk ,min

{
eαk (y,φk )X ,

√
2r

2

b
α
β
2 −τ
k e−αk

}}
= max {−R,min {(y, ek )Xs ,R}} ,

where R :=
√

2 r 2

b α
s/2+β/2−τ
k e−2αk . Inserting this into (5.9) and splitting up the integral yields

E[Ψk (ū,y)] =
∫ −R

−∞
b

√
2
λ
(|x − (−R)| − |x | + |a |) La ,λ(dx)

+

∫ R

−R
b

√
2
λ
(0 − |x | + |a |) La ,λ(dx)

+

∫ ∞

R
b

√
2
λ
(|x − R | − |x | + |a |) La ,λ(dx)

= b

√
2
λ
|a | +

∫ 0

−R
b

√
2
λ
xLa ,λ(dx) +

∫ R

0
b

√
2
λ
(−x) La ,λ(dx)

+

∫ ∞

R
b

√
2
λ
(−R) La ,λ(dx) +

∫ −R

−∞
b

√
2
λ
(−R) La ,λ(dx)

We use ∫ −R

−∞
dLa ,λ +

∫ ∞

R
dLa ,λ =

∫ ∞

R
dL−|a |,λ +

∫ ∞

R
dL |a |,λ

and ∫ 0

−R
xLa ,λ(dx) +

∫ R

0
(−x) La ,λ(dx) =

∫ R

0
(−x) L−|a |,λ(dx) +

∫ R

0
(−x) L |a |,λ(dx)
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to arrive at

E[Ψk (ū,y)] = b
√

2
λ
|a | −

∫ R

0
b

√
2
λ
xL−|a |,λ(dx) −

∫ R

0
b

√
2
λ
xL |a |,λ(dx)

−
∫ ∞

R
b

√
2
λ
RL−|a |,λ(dx) −

∫ ∞

R
b

√
2
λ
RL |a |,λ(dx)

=: b
√

2
λ
|a | + I1 + I2 + I3 + I4.

Here we must distinguish between |a | < R and |a | ≥ R. We begin with |a | < R, where the
second integral is split up into

I2 = −
∫ |a |

0
b

√
2
λ
x

1√
2λ

e−
√

2
λ ( |a |−x )dx −

∫ R

|a |
b

√
2
λ
x

1√
2λ

e−
√

2
λ (x−|a |)dx

= −b 1√
2λ

[
xe−
√

2
λ ( |a |−x )

] |a |
0
+

∫ |a |

0
b

1√
2λ

e−
√

2
λ ( |a |−x )dx

− b 1√
2λ

[
−xe−

√
2
λ (x−|a |)

]R
|a |
+

∫ R

|a |
b

1√
2λ

e−
√

2
λ (x−|a |)dx

= −b 1√
2λ

(
|a | − 0 − Re−

√
2
λ (R−|a |) + |a |

)
+ b

[
1
2e
−
√

2
λ ( |a |−x )

] |a |
0
+ b

[
− 1

2e
−
√

2
λ (x−|a |)

]R
|a |

= b
R√
2λ

e−
√

2
λ (R−|a |) − b

√
2
λ
|a |

+
b

2

(
1 − e−

√
2
λ |a |

)
+
b

2

(
1 − e−

√
2
λ (R−|a |)

)
.

The fourth integral computes as

I4 = −
∫ ∞

R
b

√
2
λ
R

1√
2λ

e−
√

2
λ (x−|a |)dx = −b R√

2λ

[
−e−
√

2
λ (x−|a |)

]∞
R

= −b R√
2λ

e−
√

2
λ (R−|a |).

Similarly, the third integral equates to

I3 = −
∫ ∞

R
b

√
2
λ
R

1√
2λ

e−
√

2
λ (x+ |a |)dx = −b R√

2λ
e−
√

2
λ (R+ |a |).
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Finally,

I1 = −
∫ R

0
b

√
2
λ
x

1√
2λ

e−
√

2
λ (x+ |a |)dx

= −b 1√
2λ

[
−xe−

√
2
λ (x+ |a |)

]R
0
+

∫ R

0
b

1√
2λ

e−
√

2
λ (x+ |a |)dx

= b
R√
2λ

e−
√

2
λ (R+ |a |) + b

[
− 1

2e
−
√

2
λ (x+ |a |)

]R
0

= b
R√
2λ

e−
√

2
λ (R+ |a |) − b

2e
−
√

2
λ (R+ |a |) +

b

2e
−
√

2
λ |a | .

For |a | < R, summing up yields

E[Ψk (ū,y)] =
b

2

(
1 − e−

√
2
λ (R−|a |)

)
+
b

2

(
1 − e−

√
2
λ (R+ |a |)

)
.

The case |a | ≥ R remains. Here, the fourth integral is split up into

I4 = −
∫ |a |

R
b

√
2
λ
R

1√
2λ

e−
√

2
λ ( |a |−x )dx −

∫ ∞

|a |
b

√
2
λ
R

1√
2λ

e−
√

2
λ (x−|a |)dx

= −b R√
2λ

[
e−
√

2
λ ( |a |−x )

] ��� |a |
R
− b R√

2λ

[
−e−
√

2
λ (x−|a |)

] ���∞
|a |

= −b R√
2λ

(
1 − e−

√
2
λ ( |a |−R) − 0 + 1

)
= −b

√
2
λ
R + b

R√
2λ

e−
√

2
λ ( |a |−R).

The second integral computes as

I2 = −
∫ R

0
b

√
2
λ
x

1√
2λ

e−
√

2
λ ( |a |−x )dx

= −b 1√
2λ

[
xe−
√

2
λ ( |a |−x )

] ���R
0
+

∫ R

0
b

1√
2λ

e−
√

2
λ ( |a |−x )dx

= −b R√
2λ

e−
√

2
λ ( |a |−R) + b

[
1
2e
−
√

2
λ ( |a |−x )

] ����R
0

= −b R√
2λ

e−
√

2
λ ( |a |−R) +

b

2e
−
√

2
λ ( |a |−R) − b

2e
−
√

2
λ |a | .

I1 and I3 remain unchanged. So for |a | ≥ R, summing up results in

E[Ψk (ū,y)] = b
√

2
λ
(|a | − R) + b

2

(
e−
√

2
λ ( |a |−R) − e−

√
2
λ ( |a |+R)

)
.
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Next, we consider

E[Ψk (ū, e−Au†)] =
∫
Xs

√
2α β−sk 2

��(e−Au†, ek )Xs − (e−Aū, ek )Xs ��Le−Au† ,b2As−β (dy)

=

∫ −R

−∞
b

√
2
λ
|a + R | La ,λ(dx) +

∫ R

−R
b

√
2
λ
|a − x | La ,λ(dx)

+

∫ ∞

R
b

√
2
λ
|a − R | La ,λ(dx)

Here, we use∫ −R

−∞
|R + a |dLa ,λ +

∫ ∞

R
|R − a |dLa ,λ =

∫ ∞

R
|R + |a | | dL−|a |,λ +

∫ ∞

R
|R − |a | | dL |a |,λ

to arrive at

E[Ψk (ū, e−Au†)] =
∫ ∞

R
b

√
2
λ
|R + |a | | L−|a |,λ(dx) +

∫ ∞

R
b

√
2
λ
|R − |a | | L |a |,λ(dx)

+

∫ R

−R
b

√
2
λ
|x − |a | | L |a |,λ(dx)

=: I5 + I6 + I7.

The integral I5 computes as

I5 = b
1√
2λ
(R + |a |) e−

√
2
λ (R+ |a |).

In case that |a | < R, I7 is split up into

I7 =

∫ |a |

−R
b

√
2
λ
(|a | − x) e−

√
2
λ ( |a |−x )dx +

∫ R

|a |
b

√
2
λ
(x − |a |) e−

√
2
λ (x−|a |)dx

= −b 1√
2λ
(R + |a |) e−

√
2
λ (R+ |a |) +

b

2e
−
√

2
λ (R+ |a |)

− b 1√
2λ
(R − |a |) e−

√
2
λ (R−|a |) +

b

2e
−
√

2
λ (R−|a |),

and I6 equals
I6 = b

1√
2λ
(R − |a |) e−

√
2
λ (R−|a |).

This leads to
E

[
Ψk (ū, e−Au†)

]
=
b

2

(
e−
√

2
λ (R−|a |) − e−

√
2
λ (R+ |a |)

)
≥ 0

for |a | < R, as the exponential function increases monotonically. Hence, we obtain

E [Ψk (ū,y)] − E
[
Ψk (ū, e−Au†)

]
= b

(
1 − e−

√
2
λ (R−|a |)

)
≥ 0
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for |a | < R.
In case that |a | ≥ R,

I6 = b

√
2
λ
(|a | − R) − b 1√

2λ
(|a | − R) e−

√
2
λ ( |a |−R),

and

I7 = b
1√
2λ

(
(|a | − R) e−

√
2
λ ( |a |−R) − (|a | + R) e−

√
2
λ ( |a |+R)

)
+
b

2

(
e−
√

2
λ ( |a |−R) − e−

√
2
λ ( |a |+R)

)
,

which results in

E
[
Ψk (ū, e−Au†)

]
= b

√
2
λ
(|a | − R) + b

2

(
e−
√

2
λ ( |a |−R) − e−

√
2
λ ( |a |+R)

)
≥ 0

for |a | ≥ R, as the exponential function increases monotonically. This yields E
[
Ψk (ū, e−Au†)

]
=

E [Ψk (ū,y)] in case |a | ≥ R. �

Now we state a �rst results regarding the weak convergence of the expectation of the MAP
estimator.

Theorem 5.43. Let {bn}n∈N and {rn}n∈N be positive sequences such that bn → 0 and rn → 0.
Moreover, let u† ∈ Xτ and yn ∼ Le−Au† ,b2

nAs−β for all n ∈ N. If

bn

r 2
n
→ 0 and

r 2
n

bωn
≤ C

for some ω ∈ (0, 1) and C > 0, then {E[ûMAP(yn)]}n∈N contains a subsequence that converges
weakly towards u† in Xτ .

Proof. For all n ∈ N set un := ûMAP(yn). De�ne δn :=
(
C−1
ε bn

) 1
1+ε for all n ∈ N, where ε := ω

1−ω
and Cε is the associated constant from Lemma 5.41. Then δn → 0,

δ 1+ε
n = C−1

ε bn and δn
bn
= C

− 1
1+ε

ε b
− ε

1+ε
n =

1
C1−ω
ε bωn

.

As un minimises Jn , the inequality

Ψ(un,yn) + bn

2r 2
n
‖un ‖2Xτ ≤ Ψ(u†,yn) + bn

2r 2
n
‖u†‖2Xτ

holds in particular. We pass on to expected values,

E [Ψ(un,yn)] + bn

2r 2
n
E

[‖un ‖2Xτ ] ≤ E[Ψ(u†,yn)] + bn

2r 2
n
‖u†‖2Xτ . (5.10)
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Lemma 5.42 guarantees that E [Ψ(un,yn)] is non-negative, so that we can estimate both terms
on the left-hand side separately. The convexity of ‖·‖2Xτ allows us to use Jensen’s inequality
and we use Lemma 5.41 as well as the boundedness of r 2

n
bωn

to obtain

‖E[un]‖2Xτ ≤ E
[‖un ‖2Xτ ] ≤ 2r 2

n

bn
E[Ψ(u†,yn)] + ‖u†‖2Xτ

≤ 2r 2
n

bn
δn + ‖u†‖2Xτ =

2r 2
n

C1−ω
ε bωn

+ ‖u†‖2Xτ ≤
2C
C1−ω
ε
+ ‖u†‖2Xτ

from (5.10), where
E[un] =

∫
Xs

un(yn)Le−Au† ,b2
nAs−β (dyn) ∈ Xτ

in the sense of the Bochner integral. So {E[un]}n∈N is bounded in Xτ . Thereby it contains a
subsequence, again denoted by {E[un]}n∈N, that converges weakly towards a ū ∈ Xτ . e−A is
compact, as it is the limit of bounded linear operators

u 7→
n∑
k=1

e−αk (u,φk )X φk

on X with �nite-dimensional range. This implies that e−A is completely continuous, since X is
re�exive and both X and Xs are Hilbert spaces. Hence, e−AE[un] → e−Aū strongly in Xs .

It remains to show that ū = u†. To this end we conclude

E[Ψ(un,yn)] ≤ E[Ψ(u†,yn)] + bn

2r 2
n
‖u†‖2Xτ ≤ δn +

bn

2r 2
n
‖u†‖2Xτ

from (5.10), again using Lemma 5.41. Now the assumptions on rn andbn ensureE[Ψ(un,yn)] → 0.
This implies E[Ψ(un, e−Au†)] → 0, since

0 ≤ lim
n→∞E

[
Ψ(un, e−Au†)] ≤ lim

n→∞E [Ψ(u
n,yn)] = 0

as a consequence of Lemma 5.42. However,

Ψ(un, e−Au†) =
√

2
∞∑
k=1

α
β−s

2
k

���(e−Au†, ek )Xs − (
e−Aun, ek

)
Xs

���
=
√

2
∞∑
k=1

α
β
2
k

���(e−Au† − e−Aun,φk )
X

���
≥
√

2
( ∞∑
k=1

α
β
k

���(e−Au† − e−Aun,φk )
X

���2) 1
2

=
√

2
e−Aun − e−Au†Xβ ,

so that the continuity of e−A, the convexity of ‖·‖Xβ and Jensen’s inequality yielde−AE[un] − e−Au†Xβ = E [
e−Aun − e−Au†]Xβ ≤ E

[e−Aun − e−Au†Xβ ]
≤ 1√

2
E

[
Ψ(un, e−Au†)] .
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Consequently, e−AE[un] → e−Au† in Xβ and by the continuity of the embedding Xβ ↪→ Xs

according to Proposition 5.10 (i) also in Xs . Now, the uniqueness of the limit implies e−Au† =
e−Aū. In a last step, it follows from the injectivity of e−A that ū = u†. �

We can achieve strong convergence if we assume that r 2
n/bωn is not only bounded, but con-

verges to 0.

Theorem 5.44. Let {bn}n∈N and {rn}n∈N be positive sequences such that bn → 0 and rn → 0.
Moreover, let u† ∈ Xτ and yn ∼ Le−Au† ,b2

nAs−β , n ∈ N. If

bn

r 2
n
→ 0 and

r 2
n

bωn
→ 0

for some ω ∈ (0, 1), then E[ûMAP(yn)] → u† in Xτ .
Proof. We consider an arbitrary subsequence of {un}n∈N, again denoted by {un}n∈N. The min-
imisation property of un implies

E [Ψ(un,yn)] + bn

2r 2
n
E

[‖un ‖2Xτ ] ≤ E[Ψ(u†,yn)] + bn

2r 2
n
‖u†‖2Xτ .

The convexity of ‖·‖2Xτ allows us to use Jensen’s inequality, and by Lemma 5.42 and Lemma
5.41 with ε := ω

1−ω we have

‖E[un]‖2Xτ ≤ E
[‖un ‖2Xτ ] ≤ 2r 2

n

bn
E[Ψ(un,yn)] + E [‖un ‖2Xτ ]

≤ 2r 2
n

bn
E[Ψ(u†,yn)] + ‖u†‖2Xτ =

2r 2
n

C1−ω
ε bωn

+ ‖u†‖2Xτ

for all n ∈ N with bn ≤ Cε , that is for n large enough. As r 2
n

bωn
→ 0 by assumption, this implies

that
lim sup
n→∞

‖E[un]‖2Xτ ≤ ‖u†‖2Xτ

and that {E[un]}n∈N is bounded in Xτ . It thereby contains a subsequence, again denoted by
{E[un]}n∈N, that converges weakly towards a ū ∈ Xτ , which implies

‖ū‖Xτ ≤ lim inf
n→∞ ‖E[u

n]‖Xτ ≤ lim sup
n→∞

‖E[un]‖Xτ ≤ ‖u†‖Xτ

because of the weak lower semi-continuity of ‖·‖Xτ . As in the proof of Theorem 5.43, we show
that ū = u†, so that

E[un]⇀ u† and lim
n→∞ ‖E[u

n]‖Xτ = ‖u†‖Xτ .

Since Xτ is a Hilbert space, it follows thatE[un − u†]Xτ = E[un] − u†Xτ → 0.

As the subsequence chosen in the beginning was arbitrary, the whole sequence {E[un]}n∈N
converges towards u†. �
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5.5.4 Convergence Rate in Mean of the Discrepancy Term

We show that for dimension d ≤ 4, the expectation of the discrepancy term Ψ(u†,y) converges
at least in the order of b(lnC/b)d/2 as b → 0. To do so, we need the following inequality for the
incomplete gamma function Γ(a, x) :=

∫ ∞
x ta−1e−tdt .

Lemma 5.45. For all a ∈ (0, 2] and x > 0 we have

Γ(a, x) ≤ (
xa−1 + |a − 1| xa−2) e−x .

Proof. Integration by parts produces

Γ(a, x) = xa−1e−x + (a − 1)
∫ ∞

x
ta−2e−tdt .

Now ta−2 ≤ xa−2, because a ≤ 2, which leads to

Γ(a, x) ≤ xa−1e−x + |a − 1|xa−2e−x . �

Lemma 5.46. Let d ∈ {1, 2, 3, 4}, u† ∈ X , b > 0 and y ∼ Le−Au† ,b2As−β . For every C > 1 there is
an ε > 0 such that

E
[
Ψ(u†,y)] ≤ C

(
2
C−

) d
2
b ln ©«

√
2
b
‖u†‖X

(
C+β

C−e

) β
2 ª®¬

d
2

for all b ∈ (0, ε).

Proof. By Lemma 5.39,

E
[
Ψ(u†,y)] = b ∞∑

k=1

(
1 − exp

(
−ck
b

))
holds with ck :=

√
2α β/2k e−αk |(u†,φk )X |. We use Assumption 5.1 (iv) and Lemma 5.14 to estimate

ck
b
≤
√

2
b

(
C+k

2
d

) β
2
e−C−k

2
d

��(u†,φk )X �� ≤ √2
b

(
2C+
C−

) β
2
(
C−
2 k

2
d

) β
2
e−

C−
2 k

2
d e−

C−
2 k

2
d ‖u†‖X

≤
√

2
b

(
2C+
C−

) β
2
(
β

2

) β
2
e−

β
2 e−

C−
2 k

2
d ‖u†‖X =

√
2
b
‖u†‖X

(
C+β

C−e

) β
2
e−

C−
2 k

2
d

for all k ∈ N. We de�ne a dominating function f by

f (κ) :=
√

2
b
‖u†‖X

(
C+β

C−e

) β
2
e−

C−
2 κ

2
d for all κ ∈ [0,∞).

Note that the function f decreases monotonically. Together with the monotonicity of t 7→
1 − exp(−t), this allows us to estimate

∞∑
k=1

(
1 − exp

(
−ck
b

))
≤
∞∑
k=1
(1 − exp (−f (k))) ≤

∫ ∞

κ=0
(1 − exp (−f (κ))) dκ .
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Substituting t := C−
2 κ

2
d and setting C1 :=

√
2
b ‖u†‖X

(
C+β
C−e

)β/2
leads to

∞∑
k=1

(
1 − exp

(
−ck
b

))
≤

∫ ∞

0

(
1 − exp

(
−C1e

−C−2 κ
2
d

))
dκ

=

∫ ∞

0

(
1 − exp

(−C1e
−t ) ) (

2
C−

) d
2 d

2 t
d
2 −1dt

We assume that b is small enough, split up the integral at

T = T (b) := lnC1,

and use the estimate 1 − exp(−t) ≤ min{t, 1} for all t ≥ 0 to arrive at

∞∑
k=1

(
1 − exp

(
−ck
b

))
≤

∫ T

0

(
2
C−

) d
2 d

2 t
d
2 −1dt +

∫ ∞

T
C1

(
2
C−

) d
2 d

2 t
d
2 −1e−tdt

=

(
2
C−

) d
2
T

d
2 +

(
2
C−

) d
2 d

2e
T Γ

(
d

2 ,T
)
.

Applying Lemma 5.45 with a = d/2 and x = T results in

∞∑
k=1

(
1 − exp

(
−ck
b

))
≤

(
2
C−

) d
2
(
T

d
2 +

d

2e
T

(
T

d
2 −1 +

����d2 − 1
����T d

2 −2
)
e−T

)
=

(
2
C−

) d
2
T

d
2

(
1 + d

2T
−1 +

d

2

����d2 − 1
����T −2

)
for d ∈ {1, 2, 3, 4}. As b tends to 0,T (b) → ∞, so that for everyC > 1 there is an ε > 0, such that

1 + d

2T
−1 +

d

2

����d2 − 1
����T −2 ≤ C for all b ∈ (0, ε).

This implies

E
[
Ψ(u†,y)] = b ∞∑

k=1

(
1 − exp

(
−ck
b

))
≤

(
2
C−

) d
2
Cb(lnC1)

d
2

≤ C

(
2
C−

) d
2
b ln ©«

√
2
b
‖u†‖X

(
C+β

C−e

) β
2 ª®¬

d
2

for all b ∈ (0, ε). �
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5.5.5 Convergence Rate of the Bias

We examine the rate of convergence of the bias under a source condition. To this end, we �rst
compute the expectation of the components of the MAP estimator explicitly.

Lemma 5.47. Let u† ∈ X , b > 0 and y ∼ Le−Au† ,b2As−β . Then

E [(ûMAP(y),φk )X ] − (u†,φk )X
= b

1
2ck

(
exp

(
− 1
b
ck

����(u†,φk )X + r 2

b
ckα

−τ
k

����) − exp
(
− 1
b
ck

����(u†,φk )X − r 2

b
ckα

−τ
k

����))
+ χ(−∞,−(u† ,φk )X )

(
r 2

b
ckα

τ
k

)
·
����(u†,φk )X + r 2

b
ckα

−τ
k

����
− χ(−∞,(u† ,φk )X )

(
r 2

b
ckα

τ
k

)
·
����(u†,φk )X − r 2

b
ckα

−τ
k

����
for all k ∈ N, where ck :=

√
2α β/2k e−αk .

Proof. Consider a �xed k ∈ N. By Lemma 5.34 and the de�nition of the Xs norm the k-th
component of the MAP estimator ū := ûMAP(y) is given by

(ū(y),φk )X = max
{
−
√

2r
2

b
α
β
2 −τ
k e−αk ,min

{
eαk (y,φk )X ,

√
2r

2

b
α
β
2 −τ
k e−αk

}}
= α

− s2
k eαk max

{
−
√

2r
2

b
α

s
2+

β
2 −τ

k e−2αk ,min
{
(y,α−

s
2

k φk )Xs ,
√

2r
2

b
α

s
2+

β
2 −τ

k e−2αk
}}

= γ max {−R,min {x,R}} , (5.11)

where
x := (y,α−

s
2

k φk )Xs , γ := α−
s
2

k eαk and R := r 2

b

√
2α

s
2+

β
2 −τ

k e−2αk .

Now x = x(y) ∼ La ,λ with

a := (e−Au†, ek )Xs =
1
γ
(u†,φk )X and λ := b2α

s−β
k .

We compute

E
[(ū(y),φk )X ]

=

∫
Xs
(ū(y),φk )X Le−Au† ,b2As−β (dy)

=

∫
R

γ max{−R,min{x,R}}La ,λ(dx)

=

∫ −R

−∞
(−γR) La ,λ(dx) +

∫ R

−R
γxLa ,λ(dx) +

∫ ∞

R
γRLa ,λ(dx)

=

∫
R

γxLa ,λ(dx) +
∫ −R

−∞
γ (−R − x) La ,λ(dx) +

∫ ∞

R
γ (R − x) La ,λ(dx)

=: I1 + I2 + I3.
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Note that I1 = γ
∫
R
xLa ,λ(dx) = γa = (u†,φk )X . For R < a, the last integral computes as

I3 =

∫ a

R
γ (R − x) 1√

2λ
e−
√

2
λ (a−x )dx +

∫ ∞

a
γ (R − x) 1√

2λ
e−
√

2
λ (x−a)dx

=

[
γ (R − x) 1

2e
−
√

2
λ (a−x )

] ����a
R
−

∫ a

R

(
−γ 1

2e
−
√

2
λ (a−x )

)
dx

+

[
−γ (R − x) 1

2e
−
√

2
λ (x−a)

] ����∞
a
−

∫ ∞

a
γ

1
2e
−
√

2
λ (x−a)dx

=
γ

2 (R − a) −
[
−γ2

√
λ

2e
−
√

2
λ (a−x )

] �����a
R

+
γ

2 (R − a) −
[
−γ2

√
λ

2e
−
√

2
λ (x−a)

] �����∞
a

= −γ (a − R) − γ2

√
λ

2e
−
√

2
λ (a−R).

Otherwise, that is if R ≥ a,

I3 =

∫ ∞

R
γ (R − x) 1√

2λ
e−
√

2
λ (x−a)dx

=
[
−γ2 (R − x) e

−
√

2
λ (x−a)

] ���∞
R
−

[
−γ2

√
λ

2e
−
√

2
λ (x−a)

] �����∞
R

= −γ2

√
λ

2e
−
√

2
λ (R−a)

We can combine these to

I3 = −γ2

√
λ

2e
−
√

2
λ |R−a | − χ(−∞,a)(R)γ |R − a | ,

where χM denotes the characteristic function of a set M . A similar computation yields

I2 =
γ

2

√
λ

2e
−
√

2
λ |R−(−a) | + χ(−∞,−a)(R)γ |R − (−a)| .

By summing up, we obtain

E
[(ū,φk )X ] − (u†,φk )X = γ2

√
λ

2

(
e−
√

2
λ |R−(−a) | − e−

√
2
λ |R−a |

)
+ γ

(
χ(−∞,−a)(R) |R − (−a)| − χ(−∞,a)(R) |R − a |

)
.
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Resubstituting a, λ, R and γ results in

E
[(ū,φk )X ] − (u†,φk )X
= b

1
2
√

2
α
− β2
k eαk

(
exp

(
− 1
b

√
2α

β
2
k e
−αk

����(u†,φk )X + r 2

b

√
2α

β
2 −τ
k e−αk

����)
− exp

(
− 1
b

√
2α

β
2
k e
−αk

����(u†,φk )X − r 2

b

√
2α

β
2 −τ
k e−αk

����))
+ χ(−∞,−(u† ,φk )X )

(
r 2

b

√
2α

β
2 −τ
k e−αk

)
·
����(u†,φk )X + r 2

b

√
2α

β
2 −τ
k e−αk

����
− χ(−∞,(u† ,φk )X )

(
r 2

b

√
2α

β
2 −τ
k e−αk

)
·
����(u†,φk )X − r 2

b

√
2α

β
2 −τ
k e−αk

���� .
Inserting ck =

√
2α

β
2
k e
−αk �nishes the proof. �

Under a source condition we can show that the bias converges at least in the order of the
noise level.

Theorem 5.48. Let u† ∈ X , b, r > 0 and y ∼ Le−Au† ,b2As−β . If aw ∈ X exists, such that

u† = A
β
2 −τ e−2Aw and sup

k ∈N
|(w,φk )X | ≤ ρ,

and if
r 2 ≥ ρb,

then E [ûMAP(y)] − u†

X ≤

1
4
(
TrA−β

) 1
2b .

Proof. We have

E[ûMAP] =
∫
Xs

ûMAP(y)Le−Au† ,b2As−β (dy) ∈ Xτ .

By Proposition 5.10, Xτ is continuously embedded into X , so that (·,φk )X is continuous on Xτ .
This allows us to writeE [ûMAP] − u†

2
X =

∞∑
k=1

��(E [ûMAP] ,φk )X − (u†,φk )X
��2 = ∞∑

k=1

��E [(ûMAP,φk )X
] − (u†,φk )X ��2 .

We want to use Lemma 5.47. The assumptions on u† and r ensure��(u†,φk )X �� = ���(A β
2 −τ e−2Aw,φk

)
X

��� = ���(w, e−2AA
β
2 −τφk

)
X

���
= e−2αkα

β
2 −τ
k

��(w,φk )X �� ≤ α β
2 −τ
k e−2αk ρ ≤ r 2

b
α
β
2 −τ
k e−2αk (5.12)

84



5.5 Consistency of the Maximum A Posteriori Estimator

for all k ∈ N. In particular, |(u†,φk )X | ≤
√

2 r 2

b α
β/2−τ
k e−αk holds. Thus the last two terms in the

expression in Lemma 5.47 are equal to zero, that is

E
[(ûMAP,φk )X

] − (u†,φk )X = b 1
2ck

(
exp

(
− 1
b
ck

(
(u†,φk )X +

r 2

b
ckα

−τ
k

))
− exp

(
− 1
b
ck

(
r 2

b
ckα

−τ
k − (u†,φk )X

)))
= b

1
ck

exp
(
−r

2

b2c
2
kα
−τ
k

)
sinh

(
− 1
b
ck (u†,φk )X

)
,

where ck :=
√

2α β/2k e−αk . The hyperbolic sine is convex on [0,∞) and odd, which leads to the
estimate

| sinh(t)| = sinh(|t |) ≤ |t |
T

sinh(T ) ≤ |t |2T eT

for all t ∈ R andT ≥ |t |. We apply this inequality with t := − 1
b ck (u†,φk )X andT := r 2

b2c
2
kα
−τ
k as

well as (5.12) and obtain��E [(ûMAP,φk )X
] − (u†,φk )X �� = b 1

ck
exp (−T ) |sinh (t)| ≤ b

1
ck

|t |
2T

=
��(u†,φk )X �� ( b2

4r 2α
τ−β
k e2αk

)
≤ 1

4α
− β2
k b .

Squaring and summing up results in

E [ûMAP] − u†
2
X ≤

∞∑
k=1

1
16α

−β
k b2 =

1
16

(
TrA−β

)
b2,

which �nishes the proof. �

Note that Theorem 5.48 yields convergence of the bias in the order of b as b → 0 even if r is
chosen constant.

5.5.6 Convergence Rate of the Mean Squared Error

Now we consider the rate of convergence of the mean squared error under a source condition.
By Lemma 5.34, the components of ûMAP are independent, so that

E
[‖ûMAP − u†‖2X

]
= E

[ ∞∑
k=1

��(ûMAP − u†,φk )X
��2] = ∞∑

k=1
E

[��(ûMAP − u†,φk )X
��2] .

We �rst compute the componentwise expectations.
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Lemma 5.49. Let u† ∈ X , b > 0 and y ∼ Le−Au† ,b2As−β . Then

E
[��(ûMAP(y) − u†,φk )X

��2]
=
b2

c2
k

f
(ck
b

���r 2ck
b
α−τk +

��(u†,φk )X �����) + b2

c2
k

f
(ck
b

���r 2ck
b
α−τk −

��(u†,φk )X �����)
+ χ(−∞, |(u† ,φk )X |)

(
r 2ck

b
α−τk

) b2

c2
k

д
(ck
b

���r 2ck
b
α−τk −

��(u†,φk )X �����) .
for all k ∈ N, where ck :=

√
2α β/2k e−αk ,

f (t) := 1 − e−t − te−t and д(t) := t2 − 2f (t)
for all t ≥ 0.

Proof. Let k ∈ N be arbitrary, but �xed, and set ū := ûMAP(y). By Lemma 5.34 and (5.11) we have

(ū,φk )X = γ max{−R,min{x,R}},
where x = x(y) := (y,α−s/2k φk )Xs , γ := α−s/2k eαk and R := r 2

b

√
2α s/2+b/2−τk e−2αk . As x ∼ La ,λ

with a := 1
γ (u†,φk )X and λ := b2α

s−β
k , we have

E
[|(ū − u†,φk )X |2] = ∫

Xs
|(ū,φk )X − (u†,φk )X |2Le−Au† ,b2As−β (dy)

=

∫
R

|γ max{−R,min{x,R}} − γa |2La ,λ(x)

=

∫ −R

−∞
γ 2 |−R − a |2La ,λ(dx) +

∫ R

−R
γ 2 |x − a |2La ,λ(dx)

+

∫ ∞

R
γ 2 |R − a |2La ,λ(dx)

= γ 2 |−R − a |2
∫ −R−a

−∞
Lλ(dz) + γ 2 |R − a |2

∫ ∞

R−a
Lλ(dz)

+ γ 2
∫ R−a

−R−a
z2Lλ(dz)

=: I1 + I2 + I3.

Now

I1 + I2 = γ
2 |−R − a |2

∫ −R−a

−∞
Lλ(dz) + γ 2 |−R + a |2

∫ −R+a

−∞
Lλ(dz)

= γ 2 |−R − |a | |2
∫ −R−|a |

−∞
Lλ(dz) + γ 2 |−R + |a | |2

∫ −R+ |a |

−∞
Lλ(dz).

In case R ≥ |a | this equals

I1 + I2 = γ
2 |−R − |a | |2 1

2e
−
√

2
λ |−R−|a | | + γ 2 |−R + |a | |2 1

2e
−
√

2
λ |−R+ |a | |,
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and the remaining integral equates to

I3 = γ
2
∫ 0

−R−a
z2Lλ(dz) + γ 2

∫ 0

−R+a
z2Lλ(dz)

= γ 2
∫ 0

−R−|a |
z2Lλ(dz) + γ 2

∫ 0

−R+ |a |
z2Lλ(dz)

= −γ 2 |−R − |a | |2 1
2e
−
√

2
λ |−R−|a | | + γ 2λ

2 f
(√

2
λ
|−R − |a | |

)
− γ 2 |−R + |a | |2 1

2e
−
√

2
λ |−R+ |a | | + γ 2λ

2 f
(√

2
λ
|−R + |a | |

)
,

where f (t) := 1 − e−t − te−t for all t ≥ 0, which adds up to

E
[��(ū − u†,φk )X ��2] = γ 2λ

2 f
(√

2
λ
|−R − |a | |

)
+ γ 2λ

2 f
(√

2
λ
|R − |a | |

)
=
b2

c2
k

f
(ck
b

���r 2ck
b
α−τk +

��(u†,φk )X �����)
+
b2

c2
k

f
(ck
b

���r 2ck
b
α−τk −

��(u†,φk )X �����)
for R ≥ |a |.

In case R < |a | we compute

I1 + I2 = γ
2 |−R − |a | |2 1

2e
−
√

2
λ |−R−|a | | + γ 2 |R − |a | |2

(
1 − 1

2e
−
√

2
λ |R−|a | |

)
.

As
I3 = γ

2
∫ R−a

−R−a
z2Lλ(dz) = γ 2

∫ R+a

−R+a
z2Lλ(dz),

we can compute this integral as

I3 = γ
2
∫ R−|a |

−R−|a |
z2Lλ(dz)

= γ 2 |R − |a | |2 1
2e
−
√

2
λ |R−|a | | − γ 2 |−R − |a | |2 1

2e
−
√

2
λ |−R−|a | |

+ γ 2 |R − |a | |
√
λ

2e
−
√

2
λ |R−|a | | + γ 2λ

2e
−
√

2
λ |R−|a | |

− γ 2 |−R − |a | |
√
λ

2e
−
√

2
λ |−R−|a | | − γ 2λ

2e
−
√

2
λ |−R−|a | |

= γ 2 |R − |a | |2 1
2e
−
√

2
λ |R−|a | | − γ 2 |−R − |a | |2 1

2e
−
√

2
λ |−R−|a | |

+ γ 2λ

2 f
(√

2
λ
|−R − |a | |

)
− γ 2λ

2 f
(√

2
λ
|R − |a | |

)
.
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This adds up to

E
[��(ū − u†,φk )X ��2] = γ 2 |R − |a | |2 + γ 2λ

2 f
(√

2
λ
|−R − |a | |

)
− γ 2λ

2 f
(√

2
λ
|R − |a | |

)
=
b2

c2
k

f
(ck
b

���r 2ck
b
α−αk +

��(u†,φk )X �����) + b2

c2
k

(ck
b

���r 2ck
b
α−τk −

��(u†,φk )X �����)2

− b2

c2
k

f
(ck
b

���r 2ck
b
α−τk −

��(u†,φk )X �����)
in case that R < |a |. �

Now we can show that under a source condition the mean squared error converges at least
in the order of the noise level.

Theorem 5.50. Let u† ∈ X , b, r > 0 and y ∼ Le−Au† ,b2As−β . If aw ∈ X exists, such that

u† = A
β
2 −τ e−Aw and sup

k ∈N
|(w,φk )X | ≤ ρ,

and if there is a C > 0, such that
ρ√
2
b ≤ r 2 ≤ Cb,

then
E

[‖ûMAP(y) − u†‖2X
] ≤ 2C (TrA−τ )b .

Proof. Since the components of ûMAP are independent by Lemma 5.34, we have

E
[‖ûMAP − u†‖2X

]
= E

[ ∞∑
k=1

��(ûMAP − u†,φk )X
��2] = ∞∑

k=1
E

[��(ûMAP − u†,φk )X
��2] .

We apply Lemma 5.49. The requirements on u† and r ensure��(u†,φk )X �� = ���(A β
2 −τ e−Aw,φk

)
X

��� = ���(w, e−AA β
2 −τφk

)
X

���
= e−αkα

β
2 −τ
k

��(w,φk )X �� ≤ α β
2 −τ
k e−αk ρ ≤ r 2

b

√
2α

β
2 −τ
k e−αk

for all k ∈ N and n ≥ N . Thus the last term in the expression in Lemma 5.49 is equal to zero,
that is,

E
[��(ûMAP − u†,φk )X

��2] = b2

c2
k

f
(ck
b

(
r 2ck

b
α−τk +

��(u†,φk )X ��) )
+
b2

c2
k

f
(ck
b

(
r 2ck

b
α−τk −

��(u†,φk )X ��) )
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for all k ∈ N, where ck :=
√

2α β/2k e−αk and f (t) := 1 − e−t − te−t for all t ≥ 0. We use the
estimate

f (t) ≤ 1 − e−t ≤ t,

that holds for all t ≥ 0, and obtain

E
[��(ûMAP − u†,φk )X

��2] ≤ 2r 2α−τk .

Consequently, by the choice of r , we have

E
[‖ûMAP − u†‖2X

] ≤ 2r 2
∞∑
k=1

α−τk = 2 Tr (A−τ ) r 2 ≤ 2C Tr (A−τ )b . �

Theorem 5.50 shows in particular that the MAP estimator is consistent, since its convergence
towards the true solution in mean square implies convergence in probability by Markov’s
inequality.

We classify the stated rate of convergence by comparing it with the optimal convergence
rate of the minimax risk in the case of Gaussian noise. Here we consider the setting of [Ding
and Mathé 2017], which provides a comparably general framework for deriving minimax rates.
Minimax rates for the particular case of an exponentially ill-posed problem with analytic
smoothness of the solution have been established in general in [Cavalier et al. 2004], and for a
speci�c problem in [Golubev and Khasminskii 2001].

We �x the dimension d = 2 and assume that the eigenvalues of A associated with the
eigenvectors φk are exactly

αk = pk
2
d = pk for all k ∈ N. (5.13)

Moreover, we assume the presence of Gaussian noise

η ∼ NAs−β

instead of Laplacian noise.
Now we can restate the problem within the framework of [Ding and Mathé 2017]. The model

considered therein is
yσ = Tx + σξ , (5.14)

where T is a compact linear operator between Hilbert spaces X and Y with singular system
{(sj ,uj ,vj )}j ∈N, i.e.,

Tx =
∞∑
j=1

sj (x,vj )Xuj ,

ξ is Gaussian white noise, σ > 0 is the noise level and yσ is the noisy data. If sj � e−pj then the
problem is called severely ill-posed or exponentially ill-posed. We can bring equation (5.3) into
this form by choosing

T = A
β
2 e−A,
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σ = b, x = u, sj = (pj)
β
2 e−pj � e−pj and vj = uj = φ j for all j ∈ N.

Model (5.14) in turn is equivalent to the sequence space model

zσj = θ j + σσjξ j , ξ j ∼ N0,1,

where θ j = (x,vj )X = (u,φ j )X and σj = s−1
j = (pj)−

β
2 epj , if x is in the orthogonal complement

of the kernel of T . This is the case because both e−A and A
β
2 are injective.

The true solution is assumed to be an element of a Sobolev-type ellipsoid

Θa(Q) =
{
θ = (θ j )∞j=1 :

∞∑
j=1

a2
jθ

2
j ≤ Q2

}
,

where a = (aj )∞j=1, aj > 0, is a given increasing sequence and Q ∈ R. If aj � eκ j for some
κ > 0, then the solution is called analytic. We obtain the source condition from Theorem 5.50
by choosing aj = (pj)τ−

β
2 epj � epj , so that κ = p, and Q = ρ

1
2 . In order for a to be increasing,

we moreover assume that τ ≥ β
2 .

The considered risk is the root-mean-square (RMS) error (E[‖θ̂ − θ ‖22])
1
2 of an estimator

θ̂ = θ̂ (zσ ). The minimax risk on the class Θa is then de�ned as

e(Θa,σ ) := inf
û

sup
θ ∈Θa

(
E

[
‖θ̂ − θ ‖22

] ) 1
2
,

where the in�mum is again taken over all estimators θ̂ = θ̂ (zσ ) that are based on the data zσ .
The main result of [Ding and Mathé 2017] now states that

e(Θa,σ ) ≤ inf
D∈N

(
Q2

a2
D+1
+ σ 2

D∑
j=1

1
s2
j

) 1
2

≤ 2.2e(Θa,σ ).

As a consequence of this, a minimax rate

e(Θa,σ ) � σ
κ

p+κ = σ
1
2 as σ → 0

follows for severely ill-posed problems with analytically smooth solution. This translates into
our notation as follows:

inf
û

sup
u†∈Θa

E
[‖û − u†‖22 ] � b as b → 0.

Note that here the choice κ = p results in a rate independent of p.
Considered in this context, Theorem 5.50 provides an upper bound for the minimax rate in

case of Laplacian noise, namely

inf
û

sup
u†∈Θa

E
[‖û − u†‖22 ] ≤ sup

u†∈Θa
E

[‖ûMAP − u†‖22
] ≤ 2C(TrA−τ )b .

This shows that at least for d = 2 and αk = pk the optimal rate of convergence of the minimax
risk for Laplacian noise is not worse than for Gaussian noise.
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5.6 Conditional Mean Estimator

Here we compute the conditional mean estimator ûCM explicitly and use the results from Section
5.4.2 to show that small changes in the data y ∈ Xs cause only small changes in the CM
estimator.

The conditional mean (CM) estimator ûCM: Xs → X is de�ned by

ûCM(y) B Eµ
y [u] =

∫
X
u µy (du),

i.e., for every y ∈ Xs , ûCM(y) is the mean of the posterior distribution µy . We consider a single
component

(ûCM(y),φm)X =
(∫

X
u µy (du),φm

)
X
.

As (·,φm)X is a continuous linear functional, this equals

(ûCM(y),φm)X =
∫
X
(u,φm)X µy (du) =

∫
X
(u,φm)X 1

Z (y) exp(−Φ(u,y))µ0(du)

=

∫
X (u,φm)X exp(−Φ(u,y))µ0(du)∫

X exp(−Φ(u,y))µ0(du)
.

We work with the orthogonal projections onto �nite dimensional subspaces Pn , de�ned by

Pnu B
n∑
k=1
(u,φk )Xφk

for all u ∈ X and n ∈ N. Now

exp(−Φ(Pnu,y)) → exp(−Φ(u,y))
for all u ∈ X because Pnu → u as n →∞ and Φ is continuous in u. Moreover,

|exp(−Φ(Pnu,y))| ≤ exp(L‖Pnu‖X ) ≤ exp(L‖u‖X )
by Proposition 5.23, where L > 0 is the Lipschitz constant of Φ(·,y), and exp(L‖·‖X ) ∈ L1(X , µ0)
by Lemma 5.26, so that exp(−Φ(Pn ·,y)) ∈ L1(X , µ0) for all n ∈ N, too. We may apply Lebesgue’s
dominated convergence theorem [Klenke 2014, Cor. 6.26] and obtain∫

X
exp(−Φ(Pnu,y))µ0(du) →

∫
X

exp(−Φ(u,y))µ0(du).

Also,
(Pnu,φm)X exp(−Φ(Pnu,y)) → (u,φm)X exp(−Φ(u,y))

for all u ∈ X and

|(Pnu,φm)X exp(−Φ(Pnu,y))| ≤ ‖u‖X exp(L‖u‖X )
≤ exp((1 + L)‖u‖X ) ∈ L1(X , µ0),
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so that (Pn ·,φm)X exp(−Φ(Pn ·,y)) ∈ L1(X , µ0) for all n ∈ N. Here Lebesgue’s dominated conver-
gence theorem yields∫

X
(Pnu,φm)X exp(−Φ(Pnu,y))µ0(du) →

∫
X
(u,φm)X exp(−Φ(u,y))µ0(du).

Note that for all n ∈ N,
⊗n

k=1Nr 2α−τk
is the pushforward measure ofNr 2A−τ under the projection

γn : X → Rn , γn(x) = ((x,φ1)X , . . . , (x,φn)X ). This allows us to write∫
X

exp(−Φ(Pnu,y))µ0(du)

=

∫
X

n∏
k=1

exp
(
−
√

2
b
α
β
2
k (|(y,φk )X − e−αk (u,φk )X | − |(y,φk )X |)

)
Nr 2A−τ (du)

=

∫
Rn

n∏
k=1

exp
(
−
√

2
b
α
β
2
k (|(y,φk )X − e−αkuk | − |(y,φk )X |)

)
n⊗
k=1
Nr 2α−τk

(duk )

=

n∏
k=1

∫
R

exp
(
−
√

2
b
α
β
2
k (|(y,φk )X − e−αkuk | − |(y,φk )X |)

)
Nr 2α−τk

(duk ). (5.15)

On the other hand, for n ≥ m we have∫
X
(Pnu,φm)X exp(−Φ(Pnu,y))µ0(du)

=

∫
X

(u,φm)X
n∏
k=1

exp
(
−
√

2
b
α
β
2
k (|(y,φk )X − e−αk (u,φk )X | − |(y,φk )X |)

)
Nr 2A−τ (du)

=

∫
R

um exp
(
−
√

2
b
α
β
2
m (|(y,φm)X − e−αmum | − |(y,φm)X |)

)
Nr 2α−τm (dum)

·
n∏
k=1
k,m

∫
R

exp
(
−
√

2
b
α
β
2
k (|(y,φk )X − e−αkuk | − |(y,φk )X |)

)
Nr 2α−τk

(duk ). (5.16)

So, if we divide (5.16) by (5.15) for n ≥ m, all factors except for one cancel out and we obtain∫
X (Pnu,φm)X exp(−Φ(Pnu,y))µ0(du)∫

X exp(−Φ(Pnu,y))µ0(du)

=

∫
R

um exp
(
−
√

2
b
α
β
2
m |ym − e−αmum |

)
Nr 2α−τm (dum)∫

R

exp
(
−
√

2
b
α
β
2
m |ym − e−αmum |

)
Nr 2α−τm (dum)

=

∫
R

x exp
(
−
√

2
b
α
β
2
m |ym − e−αmx | −

1
2r 2α

τ
mx

2
)
dx∫

R

exp
(
−
√

2
b
α
β
2
m |ym − e−αmx | −

1
2r 2α

τ
mx

2
)
dx
,

92



5.6 Conditional Mean Estimator

where ym B (y,φm)X . Consequently,

(ûCM(y),φm)X =
limn→∞

∫
X (Pnu,φm)X exp(−Φ(Pnu,y))µ0(du)

limn→∞
∫
X exp(−Φ(Pnu,y))µ0(du)

= lim
n→∞

∫
X (Pnu,φm)X exp(−Φ(Pnu,y))µ0(du)∫

X exp(−Φ(Pnu,y))µ0(du)

=

∫
R

x exp
(
−
√

2
b
α
β
2
m |ym − e−αmx | −

1
2r 2α

τ
mx

2
)
dx∫

R

exp
(
−
√

2
b
α
β
2
m |ym − e−αmx | −

1
2r 2α

τ
mx

2
)
dx
.

We further rewrite this as

(ûCM(y),φm)X =
∫
R
x exp(−ax2 − |2b̃x − c |)dx∫

R
exp(−ax2 − |2b̃x − c |)dx

with
a := 1

2r 2α
τ
m, b̃ :=

√
2

2b α
β
2
me−αm and c :=

√
2
b
α
β
2
m (y,φm)X .

We will use the following lemma to compute these integrals. In it the complementary error
function erfc appears, which is de�ned on R by

erfcx = 2√
π

∫ ∞

x
e−t

2dt .

Lemma 5.51. For all a > 0 and b, c, x ∈ R we have∫ ∞

x
exp(−at2 − 2bt − c)dt = 1

2

√
π

a
exp

(
b2

a
− c

)
erfc

(√
ax +

b√
a

)
,

and ∫ ∞

x
t exp(−at2 − 2bt − c)dt = −b

a

1
2

√
π

a
exp

(
b2

a
− c

)
erfc

(√
ax +

b√
a

)
+

1
2a exp(−ax2 − 2bx − c).

Proof. We di�erentiate the right hand side of the �rst equation,

d
dx

[
1
2

√
π

a
exp

(
b2

a
− c

)
erfc

(√
ax +

b√
a

)]
=

1
2

√
π

a
exp

(
b2

a
− c

) [
− 2√

π
exp

(
−

(√
ax +

b√
a

)2
)
√
a

]
= − exp

(
b2

a
− c −

(
ax2 + 2bx + b2

a

))
= − exp(−ax2 − 2bx − c).
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

Now the �rst equation follows from the fundamental theorem of calculus, as erfcx → 0 as
x →∞. We proceed in the same way with the second equation,

d
dx

[
−b
a

1
2

√
π

a
exp

(
b2

a
− c

)
erfc

(√
ax +

b√
a

)
+

1
2a exp(−ax2 − 2bx − c)

]
=
b

a
exp(−ax2 − 2bx − c) + 1

2a exp(−ax2 − 2bx − c)(−2ax − 2b)
= −x exp(−ax2 − 2bx − c). �

We split up the integral in the denominator into∫
R

exp(−ax2 − |2b̃x − c |)dx

=

∫ c
2b̃

−∞
exp(−ax2 + 2b̃x − c)dx +

∫ ∞

c
2b̃

exp(−ax2 − 2b̃x + c)dx

=

∫ ∞

− c
2b̃

exp(−ax2 − 2b̃x − c)dx +
∫ ∞

c
2b̃

exp(−ax2 − 2b̃x + c)dx .

By Lemma 5.51, this equals∫
R

exp(−ax2 − |2b̃x − c |)dx

=
1
2

√
π

a

[
exp

(
b̃2

a
− c

)
erfc

(
−
√
ac

2b̃
+

b̃√
a

)
+ exp

(
b̃2

a
+ c

)
erfc

(√
ac

2b̃
+

b̃√
a

)]
= χ [e−c erfc(γ−) + ec erfc(γ+)]

with

χ B
1
2

√
π

a
exp

(
b̃2

a

)
, γ− B

b̃√
a
−
√
ac

2b̃
and γ+ B

b̃√
a
+

√
ac

2b̃
.

We split up the numerator in the same manner into∫
R

x exp(−ax2 − |2b̃x − c |)dx

=

∫ c
2b̃

−∞
x exp(−ax2 + 2b̃x − c)dx +

∫ ∞

c
2b̃

x exp(−ax2 − 2b̃x + c)dx

= −
∫ ∞

− c
2b̃

x exp(−ax2 − 2b̃x − c)dx +
∫ ∞

c
2b̃

x exp(−ax2 − 2b̃x + c)dx .
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Now, by Lemma 5.51, we have∫
R

x exp(−ax2 − |2b̃x − c |)dx

=
b̃

a

1
2

√
π

a

[
exp

(
b̃2

a
− c

)
erfc

(
−
√
ac

2b̃
+

b̃√
a

)
− exp

(
b̃2

a
+ c

)
erfc

(√
ac

2b̃
+

b̃√
a

)]
+

1
2a

[
− exp

(
− ac2

4b̃2
+ c − c

)
+ exp

(
− ac2

4b̃2
− c + c

)]
= Rχ [ec erfc(γ+) − e−c erfc(γ−)]

with R :=
√

2 r 2

b α
β/2−τ
m e−αm . This results in

(ûCM(y),φm)X = R
e−c erfc(γ−) − ec erfc(γ+)
e−c erfc(γ−) + ec erfc(γ+) .

Using

γ 2
+ − γ 2

− = (γ+ + γ−)(γ+ − γ−) =
b̃√
a

2
√
ac

b̃
= 2c

we can �nally express the components in terms of the scaled complementary error function
erfcx(x) = exp(x2) erfc(x) as

(ûCM(y),φm)X = R
eγ

2− erfc(γ−) − eγ 2
+ erfc(γ+)

eγ 2− erfc(γ−) + eγ 2
+ erfc(γ+)

= R
erfcx(γ−) − erfcx(γ+)
erfcx(γ−) + erfcx(γ+) . (5.17)

This formulation will be bene�cial for the numerical computation of the CM estimator, since
erfcx(x) decays slower than erfc(x) as x increases.

Now we consider the continuity of ûCM.

Theorem 5.52. If yn → y† in Xs then

ûCM(yn) → ûCM(y†)
in X .

Proof. First, we write the conditional expectation of u for any y ∈ Xs as

Eµ
y
u =

∫
X

∞∑
k=1
(u,φk )Xφkµy (du) =

∞∑
k=1

∫
X
(u,φk )X µy (du)φk =

∞∑
k=1

Eµ
y (u,φk )Xφk .

Parseval’s identity yieldsEµyu − Eµzu2
X =

∞∑
k=1

��Eµy (u,φk )X − Eµz (u,φk )X ��2
for all y, z ∈ Xs . Now (·,φk )X ∈ L2(X , µy ) for any y ∈ Xs , as

|(u,φk )X |2 exp(−Φ(u,y)) ≤ ‖u‖2X exp(L‖u‖X ) ≤ 2 exp ((1 + L)‖u‖X ) , (5.18)
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5 A Severely Ill-posed Linear Problem with Laplacian Noise

and exp((1+ L)‖u‖X ) is µ0-integrable by Lemma 5.26. So, we may apply Lemma 5.31, and obtain��Eµy (u,φk )X − Eµz (u,φk )X ��2 ≤ 8
(
Eµ

y |(u,φk )X |2 + Eµ
z |(u,φk )X |2

)
dHell(µy , µz )2 (5.19)

for all y, z ∈ Xs . Summing up yieldsEµynu − Eµy †u2

X
≤
∞∑
k=1

8
(
Eµ

yn |(u,φk )X |2 + Eµ
y † |(u,φk )X |2

)
dHell(µyn , µy †)2

= 8
(
Eµ

yn ‖u‖2X + Eµ
y † ‖u‖2X

)
dHell(µyn , µy †)2

≤ 16CdHell(µyn , µy †)2,

where
C B

∫
X
‖u‖2X exp(L‖u‖X )µ0(du)

is �nite due to the previous considerations. Now the proposition follows from the convergence
dHell(µyn , µy †) → 0 according to Theorem 5.30. �

96



6 Numerical Study of the Inverse Heat
Equation

In this chapter we consider the inverse heat equation with �nite-dimensional data. We will
compute both MAP and the CM estimator exactly and, moreover, derive a direct sampler for the
resulting posterior distribution. Such a sampler can be used for example to compute integrals
over the posterior by Monte Carlo integration or to approximate credible sets. Our goal is
to illustrate the results from Chapter 5 and beyond their scope study the behaviour of both
estimators numerically.

6.1 Problem Se�ing

We consider the classical one-dimensonal inverse heat equation on the interval D := (0, 1).
Given a noisy temperature measurement y ∈ Y := L2(D) at the time t := 0.002 we want to
reconstruct the temperature u ∈ X := L2(D) at time 0. As described in Subsection 5.3, this
corresponds to solving the operator equation

y = e−Au + η, (6.1)

where A := −t∆ = −t ∂2

∂x 2 is the scaled weak Laplace operator in L2(D) with domain D(A) :=
H 2(D) ∩H 1

0(D) and η is the noise. Here we assume that η ∈ X0 = L2(D), i.e., we choose s := 0.
Moreover, we assume that u ∼ Nr 2A−τ and η ∼ Lb2A−β , independent of each other, where
τ , β > d

2 and r ,b > 0, as in Subsection 5.2.
The operator A is Laplace-like, as pointed out in Example 5.5, so that we are in the setting of

Chapter 5 and the posterior distribution µy on L2(D) is given by Theorem 5.28. For every k ∈ N,
the function φk : (0, 1) → R,

φk (x) :=
√

2 sin(πkx) for all x ∈ (0, 1),

is an eigenfunction of A (in particular, φk ∈ D(A)) with the associated eigenvalue αk := tπ 2k2.
Moreover, {φk }k ∈N forms an orthonormal basis of L2(D) by Proposition 4.5.2 (iv) in [Zeidler 1995]
and thereby satis�es Assumption 5.1 (iii). The eigenvalues {αk }k ∈N are positive, non-decreasing
and quadratic in k , so that they satisfy Assumption 5.1 (iv) with d = 1 and C− = C+ = tπ 2.

We want to numerically verify the behaviour of the CM and MAP estimators predicted
in theory and study their behaviour beyond the scope of the theory. We will compute both
estimates for data resulting from di�erent values of the unknown u. Here we adopt a frequentist
point of view and assume that there is a true solution u† ∈ L2(D). We consider three di�erent
scenarios:
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6 Numerical Study of the Inverse Heat Equation

• Scenario 1: There is a source element w ∈ L2(D) such that

u† = A
β
2 −τ e−Aw and sup

k ∈N
|(w,φk )X | ≤ ρ .

• Scenario 2: u† ∈ Xτ .

• Scenario 3: u† ∈ L2(D).

Scenario 1 is precisely the setting of Theorem 5.50. The motivation for Scenario 2 is that
R(ûMAP) ⊂ Xτ by De�nition 5.35, which leads to the question if here, the MAP estimator
performs better than in Scenario 3.

We will divide each scenario into two subscenarios, labeled a and b, one with rougher noise
and one with smoother noise. In Scenarios 1a, 2a, 3a we choose β = 0.65, in Scenarios 1b, 2b,
3b we choose β = 1.3. In both cases, β > 1

2 = s + d
2 . Note that in Scenario 1, u† depends of β ,

whereas in Scenarios 2 and 3 it does not. Moreover, we choose τ = 0.55 throughout. This way,
τ > 1

2 =
d
2 .

6.2 Discretisation

Now, we assume that instead of the exact data y we only have knowledge of its orthogonal
projection

yN B PNy =
N∑
k=1
(y,φk )L2φk

to the �nite dimensional subspace UN := span{φ1, . . . ,φN } ⊂ L2(D) for some N ∈ N.
We saw that the resulting posterior measure µy

N will be close to the exact one in the
sense of the Hellinger distance: By Theorem 5.30 the convergence of yN towards y implies
dHell(µyN , µy ) → 0. The posterior estimates using yN are also close to those using the exact data
y : Theorem 5.38 tells us that ûMAP(yN ) → ûMAP(y) and Theorem 5.52 tells us that ûCM(yN ) →
ûCM(y) in L2(D) as N → ∞. Moreover, the componentwise representations of ûMAP from
Lemma 5.34 and of ûCM from Section 5.6 show that only the �rst N components of ûCM(yN )
and ûMAP(yN ) are nonzero, i.e., both ûCM(yN ) and ûMAP(yN ) also belong to UN .

Motivated by this observation, we discretise the problem by projecting both sides of the
operator equation (6.1) to UN . Using

PN e
−Au =

N∑
k=1

e−αk (u,φk )L2φk = e−APNu,

this leads to
PNy = PN e

−Au + PNη = e−APNu + PNη. (6.2)

In a next step we identify UN with RN : We can restate (6.2) as a linear equation

ỹ = Kũ + η̃ (6.3)
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in RN with the N × N diagonal matrix

K := diag (e−α1, . . . , e−αN )

by setting ỹ = γN (y), ũ = γN (u) and η̃ = γN (η), where γN (u) := ((u,φ1)L2, . . . , (u,φN )L2) for all
u ∈ L2(D). As φ1, . . . ,φN is an orthonormal basis of UN , we have

‖PNu‖2L2 =

N∑
k=1
|(u,φk )L2 |2 = ‖γN (u)‖22 for all u ∈ L2(D).

We also de�ne the discretisation of the operator A, the N × N diagonal matrix

Ã := diag (α1, . . . ,αN ) .

Moreover, we denote MAP and CM estimator on RN by

ˆ̃uMAP(y1, . . . ,yN ) := γN ûMAP

(
N∑
k=1

ykφk

)
and ˆ̃uCM(y1, . . . ,yN ) := γN ûCM

(∑N
k=1 ykφk

)
, respectively.

6.3 Numerical Implementation

In this section we explain in detail how we will create the true solution in the di�erent scenarios
numerically, how we will generate samples of the Laplacian noise and how we will compute
MAP and CM estimates numerically.

In the frequentist setting we create a true solution in the following way: We �rst discretise
a piecewise constant function f1 ∈ L2(D) on an equidistant grid on [0, 1] with grid size 1

N+2 ,
where the value of f1 in the points 0 and 1 is bound to be 0. Then we represent f1 using the
discretised �rst N eigenvectors of A,(

0,φk
(

1
N + 2

)
, . . . ,φk

(
N + 1
N + 2

)
, 0

)
, k = 1, . . . ,N ,

as a basis. Subsequently, we either directly use this element w̃ ∈ RN as the true solution ũ†

(Scenario 3), or we apply Ã−τ /2 to w̃ to obtain an element corresponding to a function in Xτ
(Scenario 2), or we create the true solution by successively applying to w̃ the discrete forward
operator K and Ãβ/2−τ (Scenario 1).

The discretised noise η̃ by de�nition has the distribution Lb2A−β ◦ γ−1
N , the pushforward of

the noise measure Lb2A−β under γN . And as γ−1
N (A) = I1, ...,N ;A is a cylindrical set for every

A ∈ B(RN ), this measure is by de�nition a Laplacian product measure on RN , so that

η̃ ∼ Lb2A−β ◦ γ−1
N =

N⊗
k=1
Lb2α−βk

.
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The independence of the components ηk allows us to draw a sample η̃ ∼ ⊗N
k=1 Lb2α−βk

of
the noise by sampling each component individually. We do this by the inverse cumulative
distribution method, which is described in Subsection 6.4 and will also be used for sampling the
posterior. We generate rk , r ′k ∼ unif(0, 1), k = 1, . . . ,N , independently and then assigning

ηk =

√
2

2 sign(rk − 0.5)bα−
β
2

k log(1 − r ′k ) for k = 1, . . . ,N .

In the frequentist setting, we then generate a data sample from ỹ := Ku† + η̃.

By Lemma 5.34 the components of the MAP estimate ûMAP(yN ) are given by

(ûMAP(yN ),φk )L2 = max
{
−r

2

b
Rk ,min

{
eαk (yN ,φk )X ,

r 2

b
Rk

}}
for all k ∈ N,

where Rk =
√

2α β/2−τk e−αk . In particular,

(ûMAP(yN ),φk )L2 = 0 for k > N .

So ûMAP(yN ) ∈ span{φ1, . . . ,φN } and we only need to compute its �rst N components.

In Section 5.6 we found that components of the CM estimate ûCM(yN ) are given by

(ûCM(yN ),φk )X = Rk
erfcx(γ−k ) − erfcx(γ−k )
erfcx(γ−k ) + erfcx(γ−k )

. (6.4)

for all k ∈ N, where

Rk := b̃

a
, γ−k B

b̃√
a
−
√
ac

2b̃
, γ+k B

b̃√
a
+

√
ac

2b̃
,

a := 1
2r 2α

τ
k , b̃ :=

√
2

2b α
β
2
k e
−αk , c :=

√
2
b
α
β
2
k (y,φk )X .

Again,
(ûCM(yN ),φk )L2 = 0 for k > N ,

so that ûCM(yN ) ∈ span{φ1, . . . ,φN }, too, and we only need to compute its �rst N components.
We have expressed (6.4) in this form because it allows us to evaluate erfcx(x) = exp(x2) erfc(x)

instead of erfc(x), which decays slower for x → +∞. However, erfcx(x) increases very fast for
x → −∞, which is why we will only evaluate it for nonnegative values of x . We can do this by
using the identity

erfcx(−x) = 2 exp(x2) − erfcx(x),
which follows directly from the symmetry erfc(−x) = 2 − erfc(x).
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In case γ+k ≥ 0 and γ−k ≥ 0, we can evaluate (6.4) as it is. In the remaining cases we perform
some transformations in order to evaluate the k-th component of ûCM(yN ) su�ciently numeri-
cally stably. Note that γ+k and γ−k cannot both be negative, as b̃√

a > 0. In case γ+k ≥ 0 and γ−k < 0,
we replace erfcx(γ−k ) = 2 exp((γ−k )2) − erfcx(−γ−k ), which leads to

(ûCM(y),φk )L2 = Rk
2 exp((γ−k )2) − erfcx(−γ−k ) − erfcx(γ+k )
2 exp((γ−k )2) − erfcx(−γ−k ) + erfcx(γ+k )

,

= Rk
2 − exp(−(γ−k )2)

[
erfcx(−γ−k ) + erfcx(γ+k )

]
2 − exp(−(γ−k )2)

[
erfcx(−γ−k ) − erfcx(γ+k )

] .
In case γ+k < 0 and γ−k ≥ 0, we replace erfcx(γ+k ) = 2 exp((γ+k )2) − erfcx(−γ+k ), which results in

(ûCM(y),φk )L2 = Rk
erfcx(−γ−k ) + erfcx(γ+k ) − 2 exp((γ+k )2)
erfcx(−γ−k ) − erfcx(γ+k ) + 2 exp((γ+k )2)

,

= Rk
exp(−(γ+k )2)

[
erfcx(−γ−k ) + erfcx(γ+k )

] − 2
exp(−(γ+k )2)

[
erfcx(−γ−k ) − erfcx(γ+k )

]
+ 2
.

6.4 Direct Posterior Sampling

In order to implement a posterior sampler that samples the �rst N components of the posterior
u ∼ µyN , we need their marginal distribution, or, in other words, the distribution of the projec-
tion of the posterior to UN = span{φ1, . . . ,φN }. Here, we could also choose a subspace with
a dimension di�erent from N , but this would either result in a loss of part of the information
contained in yN , or in no gain of information, because additional components would be com-
pletely determined by the prior. If we identify UN with RN , then this distribution is given by
the pushforward

µN B µy
N ◦ γ−1

N

of µN under the projection γN : X → RN ,

γN (u) = ((u,φ1)L2, . . . , (u,φN )L2).
Unlike µyN , which is still a measure on L2(D), µN constitutes a measure on RN . By de�nition
of NA−τ , we have

µN (M) = µyN ({u ∈ X : γNu ∈ M})

=
1

ZN (y)
∫

{u ∈X :γNu ∈M }
exp(−ΦN (u,y))Nr 2A−τ (du)

=
1

ZN (y)
∫
M

N∏
k=1

exp
(
−
√

2
b
α
β
2
k (|yk − e−αkxk | − |yk |)

) (
N⊗
k=1
Nr 2α−τk

)
(dx)

=
CN

ZN (y)
∫
M

N∏
k=1

exp
(
−
√

2
b
α
β
2
k (|yk − e−αkxk | − |yk |) −

1
2r 2α

τ
kx

2
k

)
dx
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for all M ∈ B(RN ), where yk B (y,φk )X , x = (x1, . . . , xN ) and

CN B

(
(2π )d

N∏
k=1

(
r 2α−τk

))− 1
2

.

A similar computation yields the normalisation constant

ZN (y) = Z (PNy) =
∫
X

exp(−Φ(u, PNy))Nr 2A−τ (du)

=

∫
X

exp(−ΦN (u,y))Nr 2A−τ (du)

=

∫
RN

N∏
k=1

exp
(
−
√

2
b
α
β
2
k (|yk − e−αkxk | − |yk |)

) (
N⊗
k=1
Nr 2α−τk

)
(dx)

= CN
N∏
k=1

∫
R

exp
(
−
√

2
b
α
β
2
k (|yk − e−αk t | − |yk |) −

1
2r 2α

τ
k t

2

)
dt .

Consequently,

µN (M) =
∫
M

N∏
k=1

exp
(
−
√

2
b
α
β
2
k |yk − e−αkuk | −

1
2r 2α

τ
ku

2
k

)
∫
R

exp
(
−
√

2
b
α
β
2
k |yk − e−αk t | −

1
2r 2α

τ
k t

2
)
dt

du

for all M ∈ B(RN ). So, the approximated posterior µN has a probability density ppost with
respect to the Lebesgue measure on RN of the form

ppost(u1, . . . ,uN ) =
N∏
k=1

pk (uk )

with

pk (x) B
exp(−akx2 − |2b̃kx − ck |)∫

R
exp(−akt2 − |2b̃kt − ck |)dt

for all x ∈ R and k = 1, . . . ,N . Here,

ak := 1
2r 2α

τ
k , b̃k :=

√
2

2b α
β
2
k e
−αk and ck :=

√
2
b
α
β
2
k (y,φk )X .

Hence the components uk of u ∼ µN are by de�nition independent.
This independence allows us to draw a sampleu ∼ µN from the marginal posterior distribution

by sampling each component uk individually. We have seen that the probability density p of a
single component uk is of the form

p(x) = 1
Z exp

(−ax2 − |bx − c |)
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with a,b > 0, c ∈ R andZ B
∫
R

exp(−at2 − |bt − c |)dt ,
Now we develop a direct sampler for a distribution ν with density p that uses the inverse

cumulative distribution method. The cumulative distribution function (cdf) F of uk is de�ned by

F (x) =
∫ x

−∞
p(t)dt

for all x ∈ R. In general, F−1: [0, 1] → R denotes the generalised inverse of F , in our case,
however, the ordinary inverse of F exists, because p is positive and hence F is strictly monotonic.
The basis for the sampler is the observation, that, if r ∼ unif(0, 1) is a uniformly distributed
random variable on the interval [0, 1], then F−1(r ) has the desired distribution ν . As F−1 is
monotonic and the probability density of r is equal to 1, the probability density q of F−1(r ) is
given by the change of variable formula as

q(x) =
���� d
dx F (x)

���� · 1 = p(x)
for all x ∈ R.
Lemma 6.1. If the probability density function p of a real random variable x is of the form

p(x) = 1
Z exp

(−ax2 − |bx − c |)
with a,b,Z > 0, c ∈ R, then its cumulative distribution function F is given by

F (x) =


1
Z

1
2
√π

a exp
(
b2

4a − c
)

erfc
(

b
2
√
a −
√
ax

)
if x ≤ c

b ,

1 − 1
Z

1
2
√π

a exp
(
b2

4a + c
)

erfc
(

b
2
√
a +
√
ax

)
if x > c

b .

Moreover, the normalisation factorZ is given by

Z = 1
2

√
π

a

[
exp

(
b2

4a − c
)

erfc
(

b

2
√
a
−
√
ac

b

)
+ exp

(
b2

4a + c
)

erfc
(

b

2
√
a
+

√
ac

b

)]
.

Proof. For x ≤ c
b we have

F (x) =
∫ x

−∞
p(t)dt = 1

Z
∫ x

−∞
exp(−at2 + bt − c)dt

=
1
Z

∫ ∞

−x
exp(−at2 − 2b2t − c)dt

=
1
Z

1
2

√
π

a
exp

(
b2

4a − c
)

erfc
(

b

2
√
a
− √ax

)
by Lemma 5.51. In contrast, for x > c

b we compute, using
∫
R
p(t)dt = 1,

F (x) =
∫ x

−∞
p(t)dt = 1 − 1

Z
∫ ∞

x
exp(−at2 − bt + c)dt

= 1 − 1
Z

∫ ∞

x
exp(−at2 − 2b2t − (−c))dt

= 1 − 1
Z

1
2

√
π

a
exp

(
b2

4a + c
)

erfc
(

b

2
√
a
+
√
ax

)
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Finally, again by Lemma 5.51, we have

Z =
∫
R

exp
(−ax2 − |bx − c |) dt

=

∫ c
b

−∞
exp(−at2 + bt − c)dt +

∫ ∞

c
b

exp(−at2 − bt + c)dt

=

∫ ∞

− cb
exp(−at2 − 2b2t − c)dt +

∫ ∞

c
b

exp(−at2 − 2b2t − (−c))dt

=
1
2

√
π

a

[
exp

(
b2

4a − c
)

erfc
(

b

2
√
a
−
√
ac

b

)
+ exp

(
b2

4a + c
)

erfc
(

b

2
√
a
+

√
ac

b

)]
�

We can express F and Z more concisely with χ B 1
2
√π

a exp
(
b2

4a

)
, γ− B b

2
√
a −

√
ac
b , γ+ B

b
2
√
a +

√
ac
b and γ B b

2
√
a as

Z = χ [exp(−c) erfc(γ−) + exp(c) erfc(γ+)]

and

F (x) =
{

1
Z χ exp(−c) erfc(γ − √ax) for x ≤ c

b ,

1 − 1
Z χ exp(c) erfc(γ + √ax) for x > c

b .

We further simplify this to

F (x) = erfc(γ − √ax)
erfc(γ−) + exp(2c) erfc(γ+)

for x ≤ c
b and

F (x) = 1 − erfc(γ + √ax)
exp(−2c) erfc(γ−) + erfc(γ+)

for x > c
b respectively.

Now we can invert F . Because of the monotonicity of F , x ≤ c
b holds if and only if F (x) ≤ F ( cb ).

Given r ∈ [0, F ( cb )] we want to �nd an x ∈ R with F (x) = r . We divide this task into two steps:
First we �nd a z ∈ R such that

r =
z

erfc(γ−) + exp(2c) erfc(γ+) ,

then we �nd an x ∈ R such that
z = erfc(γ − √ax).

The �rst condition leads to

z = r [erfc(γ−) + exp(2c) erfc(γ+)] , (6.5)

and the second one results in
x =

γ − erfcinv(z)√
a

,
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where erfcinv denotes the inverse of the complementary error function. This way, F (x) = r
holds by construction. We proceed in the same way for r ∈ (F ( cb ), 1]. Here, we demand

r = 1 − z

exp(−2c) erfc(γ−) + erfc(γ+) and z = erfc(γ + √ax),

which leads to
z = (1 − r ) [exp(−2c) erfc(γ−) + erfc(γ+)] (6.6)

and
x =

erfcinv(z) − γ√
a

.

We can combine this to

F−1(r ) =
{ 1√

a (γ − erfcinv (r [erfc(γ−) + exp(2c) erfc(γ+)])) if r ∈ [0, F ( cb )],
1√
a (erfcinv ((1 − r ) [exp(−2c) erfc(γ−) + erfc(γ+)]) − γ ) if r ∈ (F ( cb ), 1].

The numerical evaluation of F−1 requires additional thought. We will utilise several of the
techniques used in [Lucka 2012, Appendix B] (or [Lucka 2014, A.3]) for the implementation of
an `1 sampler. In order to compute the arguments of erfcinv in equations (6.5) and (6.6) with
the necessary precision, we express them in terms of the scaled complementary error function
erfcx(x) = exp(x2) erfc(x), which decays slower for x → +∞. We do this in such a way that
erfcx(x) is only evaluated for nonnegative values of x , since erfcx(x) increases very fast for
x → −∞. Additionally, we compute the logarithm of z instead of z in equations (6.5) and (6.6)
in order to avoid multiplying very large numbers with very small ones. Furthermore, we use an
asymptotic approximation of erfcinv(exp(w)) for w → −∞.

We �rst compute

γ 2
+ − γ 2

− = (γ+ + γ−)(γ+ − γ−) =
b√
a

2
√
ac

b
= 2c . (6.7)

Note that γ+ and γ− by de�nition cannot both be negative, because a,b > 0, so that we only
have to consider the following three cases:

If both γ+ ≥ 0 and γ− ≥ 0, then z in (6.5) is given by

z1 = r [erfc(γ−) + exp(2c) erfc(γ+)]
= r exp(−γ 2

−)
[
exp(γ 2

−) erfc(γ−) + exp(γ 2
+) erfc(γ+)

]
= r exp(−γ 2

−)ω++ (6.8)

with ω++ B erfcx(γ+) + erfcx(γ−). In (6.6), z is given by

z2 = (1 − r ) [exp(−2c) erfc(γ−) + erfc(γ+)]
= (1 − r ) exp(−γ 2

+)
[
exp(γ 2

−) erfc(γ−) + exp(γ 2
+) erfc(γ+)

]
= (1 − r ) exp(−γ 2

+)ω++. (6.9)
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In case γ+ ≥ 0 and γ− < 0, we use the identity

erfcx(−x) = 2 exp(x2) − erfcx(x),

which follows directly from erfc(−x) = 2 − erfc(x). With

ω+− B erfcx(γ+) − erfcx(−γ−) = erfcx(γ+) + erfcx(γ−) − 2 exp(γ 2
−),

z in (6.5) is given by

z3 = r exp(−γ 2
−) [erfcx(γ−) + erfcx(γ+)]

= r exp(−γ 2
−)

[
ω+− + 2 exp(γ 2

−)
]

= r
[
exp(−γ 2

−)ω+− + 2
]
, (6.10)

whereas z in (6.6) is given by

z4 = (1 − r ) exp(−γ 2
+) [erfcx(γ−) + erfcx(γ+)]

= (1 − r ) exp(−γ 2
+)

[
ω+− + 2 exp(γ 2

−)
]

= (1 − r ) [exp(−γ 2
+)ω+− + 2 exp(−2c)] . (6.11)

In case γ+ < 0 and γ− ≥ 0, we set

ω−+ B erfcx(−γ+) − erfcx(γ−) = 2 exp(γ 2
+) − erfcx(γ+) − erfcx(γ−).

Here, z in (6.5) is given by

z5 = r exp(−γ 2
−) [erfcx(γ−) + erfcx(γ+)]

= r exp(−γ 2
−)

[−ω−+ + 2 exp(γ 2
+)

]
= r

[− exp(−γ 2
−)ω−+ + 2 exp(2c)] , (6.12)

and z in (6.6) is given by

z6 = (1 − r ) exp(−γ 2
+) [erfcx(γ−) + erfcx(γ+)]

= (1 − r ) exp(−γ 2
+)

[−ω−+ + 2 exp(γ 2
+)

]
= (1 − r ) [− exp(−γ 2

+)ω−+ + 2)] . (6.13)

Now, we compute the logarithms of the above expressions. Here, we denote the natural
logarithm by log. We have

log z1 = log r − γ 2
− + logω++, (6.14)

log z2 = log(1 − r ) − γ 2
+ + logω++. (6.15)

For the remaining expressions, we use the following identity: For x > 0 and y ∈ R \ {0} with
x + y > 0,

log(x + y) = logx + log(1 + sign(y) exp(log|y | − logx)). (6.16)
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For ω+− , 0 we obtain

log z3 = log r + log[2 + exp(−γ 2
−)ω+−] (6.17)

= log r + log 2 + log
(
1 + sign(ω+−) exp

(
log|ω+− | − γ 2

− − log 2
) )
,

log z4 = log(1 − r ) + log[2 exp(−2c) + exp(−γ 2
+)ω+−]

= log(1 − r ) + log 2 − 2c
+ log

(
1 + sign(ω+−) exp

(
log|ω+− | − γ 2

+ − log 2 + 2c
) )
,

= log(1 − r ) + log 2 − 2c (6.18)
+ log

(
1 + sign(ω+−) exp

(
log|ω+− | − γ 2

− − log 2
) )
,

using γ 2
+ − γ 2− = 2c . For ω−+ , 0 we compute

log z5 = log r + log[2 exp(2c) − exp(−γ 2
−)ω−+]

= log r + log 2 + 2c
+ log

(
1 − sign(ω−+) exp

(
log|ω−+ | − γ 2

− − log 2 − 2c
) )

= log r + log 2 + 2c (6.19)
+ log

(
1 − sign(ω−+) exp

(
log|ω−+ | − γ 2

+ − log 2
) )

log z6 = log(1 − r ) + log[2 − exp(−γ 2
+)ω−+]

= log(1 − r ) + log 2 (6.20)
+ log

(
1 − sign(ω−+) exp

(
log|ω−+ | − γ 2

+ − log 2
) )
.

If ω+− = 0 (or ω−+ = 0), the expressions for z3 and z4 (or z5 and z6) simplify considerably, so
that we do not have to use (6.16).

Finally, we can compute erfcinv(z). To this end let w = log z. If z is not too small, we can
compute z = erfcinv(exp(w)) using the standard implementation of erfcinv. For ω < −680, we
use the following asymptotic approximation of z ≈ erfcinv(exp(w)) for w → −∞ from [DLMF,
§7.17(iii)], which follows from [Blair, Edwards, and Johnson 1976], after modi�cations:

z B s−
1
2 + a2s

3
2 + a3s

5
2 + a4s

7
2 ,

where

θ B − logπ − log(−w),
s B

2
θ − 2w ,

v B −θ − 2,

a2 B
1
8v,

a3 B − 1
32

(
v2 + 6v − 6

)
,

a4 B
1

384
(
4v3 + 27v2 + 108v − 300

)
.
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6.5 Numerical Results

6.5.1 Laplacian Noise

First, we will plot samples of the Laplacian noise for di�erent values of β to get an impression
of its smoothness and compute empirical con�dence regions to illustrate its spread. Figure 6.1
shows samples

η̃ ∼
N⊗
k=1
Lb2α−βk

of the noise for di�erenct values of β , where N = 800. Here, b is chosen as (∑N
k=1 α

−β
k )−

1
2 , so

that the variance

E
[‖η̃‖2RN ]

= b2
N∑
k=1

α
−β
k

of η̃ is equal to 1. Note that only for β > 1
2 , η̃ corresponds to Laplacian noise in L2(D), because

only in this case A−β is trace class and hence the Laplacian measure Lb2A−β on L2(D) is covered
by our de�nition.

Next, we consider empirical credible regions for the noise and a range of values of β . We
generate M = 10000 samples of the noise for each value of β and plot the empirical inverse
cumulative distribution of their norm ‖η̃‖2 in Figure 6.2, i.e., for every value r ∈ [0, 1] the
minimal radius of a ball in L2(D) around 0 that contains a fraction r of the samples. We can
see that although the noise has variance 1 in all cases, for smaller values of β the norm of the
samples is more concentrated around 1, whereas for larger values of β their norm is spread out
more into small values closer to 0 and large values greater than 1.

6.5.2 Frequentist Se�ing

In this subsection, we will plot MAP and CM estimator for Scenarios 1-3, juxtaposed with the
true solution, and inspect them visually. We will study how the choice of the regularisation
parameter r a�ects the mean squared error of both estimators and if the mean squared error
converges to zero in the small noise limit. Additionally, we will compare the spread of both
estimators around the true solution in the di�erent scenarios by computing empirical con�dence
regions around them. We will discretise with N = 180 throughout the rest of this section, unless
otherwise stated.

In Figures 6.3, 6.4 and 6.5, we take a �rst look at the MAP and CM estimator in Scenarios 1
to 3 for a �xed ratio between the standard deviation b(∑N

k=1 α
−β
k )

1
2 of the noise and the norm

‖yN ‖L2 = ‖ỹ ‖2 of the noise-free data of 1
1000 by choosing

b = 0.001‖ỹ ‖2
( N∑
k=1

α
−β
k

)− 1
2
. (6.21)

In Scenario 1, we set ρ = supk ∈N |(w,φk )L2 | and choose r = 1.1 · 2− 1
4 ρ

1
2b

1
2 a priori, motivated by

Theorem 5.50. In Scenarios 2 and 3 we anticipate the results of the subsequent experiment and
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Figure 6.1: Samples of Laplacian noise η̃ ∼⊗N
k=1 Lb2α−βk

with N = 800.
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Figure 6.2: The empirical inverse cumulative distribution of ‖η̃‖RN for M = 10000 samples of
Laplacian noise η̃ ∼⊗N

k=1 Lb2α−βk
with N = 800.

choose r optimal in the sense that it minimises the sum of the mean squared errors of MAP and
CM estimator. Visually, both estimators appear very smooth, in particular smoother than the
true solution u† ∈ Xτ from Scenario 2.

Next, we consider the mean squared error (MSE)

E
[‖û − u†‖2L2

]
=

∫
L2(D)
‖û(y) − u†‖2L2Le−Au† ,b2A−β (dy)

of both estimators for di�erent values of r , with b chosen according to (6.21) as before. Here û
stands for ûMAP or ûCM, respectively. We approximate the MSE of the respective estimator by
its empirical mean squared error

1
M

M∑
m=1

 ˆ̃u(ỹm) − ũ†
2
RN

for M = 100 realisations of the data ỹm = Kũ† + η̃m determined by M samples η̃1, . . . , η̃M of the
noise. In Figures 6.6, 6.7 and 6.8 we plot the empirical MSE of both estimators against r .

In Scenarios 1a and 1b we observe that the MSE of the MAP estimator decreases monotonically
as r decreases up to the lower bound r0 := 2− 1

4 ρ
1
2b

1
2 from Theorem 5.50, where the MSE changes

its behaviour abruptly and increases very rapidly. The MSE of the CM estimator displays roughly
the same behaviour as the MAP estimator, it decreases monotonically as r decreases up to a
point slightly above r0 and then increases rapidly. In contrast to the MAP estimator, there is no
abrupt change in its behaviour but a smooth transition. For the MAP estimator this suggests
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Figure 6.3: Scenarios 1a (left) and 1b (right) with r = 1.1 · 2− 1
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Figure 6.4: Scenarios 2a with r = 0.0477 (left) and 2b with r = 0.0731 (right).
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Figure 6.5: Scenarios 3a with r = 0.1096 (left) and 3b with r = 0.1313 (right).
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the lower bound 2− 1
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2 for r from Theorem 5.50.
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Figure 6.7: Mean squared error for di�erent values of r for Scenarios 2a (left) and 2b (right).
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Figure 6.8: Mean squared error for di�erent values of r for Scenarios 3a (left) and 3b (right).
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choosing r as small as possible, but larger than r0. Motivated by this, we will use the a priori
choice

r = 1.1 · 2− 1
4 ρ

1
2b

1
2

in the following for Scenario 1.
In Scenarios 2 and 3 the mean squared errors of both estimators decrease monotonically as

r decreases up to a certain point and then increase monotonically. In contrast to Scenario 1,
there is a �at valley around the value of r that minimises the MSE, while for small r the MSE
again grows very rapidly. In Scenarios 2a, 3a and 3b the MSE of both estimators transitions
smoothly and so does the MSE of the CM estimator in Scenario 2b. The MAP estimator in
Scenario 2b poses an exception. Here the MSE changes its behaviour abruptly at a small value
of r . In contrast to Scenario 1 this sudden change does not occur in the value of r that minimises
the MSE but outside of the valley around it.

In Figures 6.9 and 6.10 we study the frequentist consistency of both estimators numerically
by considering the MSE and the variance of the squared error (VSE)

Var
(
‖û − u†‖2L2

)
= E

[(
‖û − u†‖2L2 − E

[‖û − u†‖2L2
] )2

]
for values of b ranging roughly from 0.1 to 1.0 · 10−10. Here, we use M = 1000 noise samples to
approximate MSE and VSE.
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Figure 6.9: The mean squared error of both estimators for di�erent values of b.
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Figure 6.10: The variance of the squared error of both estimators for di�erent values of b.

We observe, that in Scenarios 1a and 1b the mean squared error of both estimators converges to
0 as b tends to 0. The MAP estimator converges in the order of b, the rate estimated in Theorem
5.50. The CM estimator behaves, up to a constant, in the same way and also converges in the
order of b. The MSE of the MAP estimator remains below the upper bound 2C(TrA−τ )b from
Theorem 5.50. The actual MSE is smaller than the bound by a factor between 12.2 (b ≈ 0.1) and
298 (b ≈ 1.0 · 10−10). In Scenarios 2 and 3 the MSE of neither MAP nor CM estimator converges
to 0. It only decreases down to around 0.043 (b ≈ 5.4 · 10−4) in Scenarios 2a and 2b and down
to around 0.25 (b ≈ 5.4 · 10−4) in Scenarios 3a and 3b. Then it remains practically constant for
smaller values of b. In all considered scenarios the VSE of both estimators converges to 0 in the
order of b2.

Finally, we determine empirical con�dence regions for the true solution ũ†. In particular,
we consider balls in RN around the MAP or CM estimate as con�dence sets. We generate
M = 10000 realisations of the data ỹ = Kũ† + η̃, which in turn are determined by M samples
of the noise η̃. For every value p ∈ [0, 1] we seek the minimal radius, such that for a fraction
p of the samples a ball around the respective estimate ˆ̃u(ỹ) with the same radius includes the
true solution ũ†. This is equivalent to choosing for every p ∈ [0, 1] the minimal radius of a ball
around ũ† that contains a fraction p of the respective estimates, or, in other words, �nding the
empirical inverse cumulative distribution of the error ‖ ˆ̃u(ỹ) − ũ†‖2 of the respective estimates.
In order to make the con�dence sets from the di�erent Scenarios quantitatively comparable,
we normalise the true solution ũ† in each scenario to satisfy ‖ũ†‖2 = 1. Moreover, we choose
b such that the standard deviation b(∑N

k=1 α
−β
k )

1
2 of the noise is equal to 10−3. The results are
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plotted in Figure 6.11.
In Scenarios 2 and 3 there is a ball around u† with radius 0.055 and 0.25, respectively, that

contains none of the samples of the estimates, whereas virtually all samples are contained
in a ball with a slightly larger radius of 0.07 and 0.3, respectively, suggesting that in these
Scenarios for both estimators the bias is predominant and the e�ect of the variance is much
smaller. Only in Scenario 1 the samples are spread out more smoothly and the e�ect of the bias
is smaller in comparison. Here, the di�erence between a 0.05- and a 0.95-con�dence region is
more pronounced, while there still exists a ball with radius 0.002 around u† that contains none
of the samples.

6.5.3 Fully Bayesian Se�ing

Now, we consider CM and MAP estimator in a fully Bayesian setting. We will plot a number
of samples of the posterior for di�erent values of τ to visually inspect their smoothness and
their spread and compare them to both estimators. Moreover, we will compare the spread of the
posterior for di�erent values of τ and β by computing empirical credible sets around MAP and
CM estimator.

As before, we draw the noise η̃ from a Laplacian distribution

N⊗
k=1
Lb2α−βk

,

where b is chosen in such a way, that its standard deviation b(∑N
k=1 α

−β
k )

1
2 is equal to 10−3. The

discretised prior ũ by de�nition has the distribution Nr 2A−τ ◦ γ−1
N , the pushforward of the prior

distributionNr 2A−τ under γN . And as γ−1
N (A) = I1, ...,N ;A is a cylindrical set for everyA ∈ B(RN ),

this measure is by de�nition a Gaussian product measure on RN , i.e.,

Nr 2A−τ ◦ γ−1
N =

N⊗
k=1
Nr 2α−τk

.

We thus draw the prior ũ from a Gaussian distribution
⊗N

k=1Nr 2α−τk
, where r is chosen such

that its standard deviation r (∑N
k=1 α

−τ
k )

1
2 is equal to 1. Then we set ỹ := Kũ + η̃ and study the

marginal posterior distribution µN .
We take a �rst look at M = 8 samples of the posterior ũpost := ũ |ỹ ∼ µN for

τ ∈ {0.55, 1.55, 2.55}
and β = 0.65. Here we choose N = 1000. In Figure 6.12 we plot the corresponding functions

upost,m =
N∑
k=1
(ũpost)kφk form = 1, . . . ,M .

The posterior samples resemble the prior sample in smoothness and distance to MAP and CM
estimate. For all values of τ both estimates appear to be signi�cantly smoother than the posterior
samples.

116



6.5 Numerical Results

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

1.2

1.4
·10−2 Scenario 1

MAP Scen. 1a
CM Scen. 1a
MAP Scen. 1b
CM Scen. 1b

0 0.2 0.4 0.6 0.8 10

2

4

6

8
·10−2 Scenario 2

MAP Scen. 2a
CM Scen. 2a
MAP Scen. 2b
CM Scen. 2b

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4
Scenario 3

MAP Scen. 3a
CM Scen. 3a
MAP Scen. 3b
CM Scen. 3b

Figure 6.11: The empirical inverse cumulative distribution of ‖ ˆ̃u(ỹ) − ũ†‖RN for M = 10000
samples.
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Figure 6.12: M = 8 samples of the posterior, the sample of the prior underlying the
data, the MAP estimate and the CM estimate for di�erent values of τ .
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In Figure 6.13 we consider the convergence of the empirical posterior mean

ˆ̃uCM,M := 1
M

M∑
m=1

ũpost,m

of M samples of the posterior ũpost ∼ µN towards the exact posterior mean, the CM estimate
ˆ̃uCM(ỹ). Here we choose τ = 2.55 and β = 0.65. We observe that the error ‖ ˆ̃uCM,M − ˆ̃uCM‖2

100 101 102 103 104 105 106

10−5

10−4

10−3

10−2

M

Error
O(1/√M)

Figure 6.13: Error ‖ ˆ̃uCM,M − ˆ̃uCM‖RN of the empirical posterior mean using M samples compared
to the exact posterior mean.

converges to 0 in the order of 1/√M as M tends to in�nity.

Finally, we consider empirical credible regions of the posterior around the MAP and the CM
estimate. We generate M = 100000 samples of the posterior ũpost ∼ µN and plot the empirical
inverse cumulative distribution of their distance ‖ũpost − ˆ̃u(ỹ)‖2 to the MAP or the CM estimate,
respectively, in Figure 6.14. For every value r ∈ [0, 1] this is the minimal radius of a ball in
RN around ˆ̃u(ỹ) that contains a fraction r of the samples. Consequently, these balls can be
considered as an approximation of credible regions for the marginal posterior ũpost, i.e., sets
that contain ũpost with a probability greater than or equal to r .

We do this for di�erent values of τ and β . We consider a rougher prior with τ = 0.55
(Scenario 4) and a smoother one with τ = 2.55 (Scenario 5). Again, we divide each scenario into
two subscenarios, one with β = 0.65, labeled a, and one with β = 1.3, labeled b. Scenario 5
corresponds to a prior u which belongs to Xt almost surely for every t ∈ [0, 2.05), whereas for
the prior corresponding to Scenario 4 this is the case only for t ∈ [0, 0.05).

We observe that the smoother noise in Scenarios 4b and 5b leads to a slightly more con-
centrated posterior than the rougher noise in Scenarios 4a and 5a. The e�ect of a smoother
prior, on the other hand, is tremendous; the posterior is much more concentrated than for a
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Figure 6.14: The empirical inverse cumulative distribution of ‖ũpost − ˆ̃u(ỹ)‖RN for M = 100000
samples of the posterior ũpost.

rougher prior. In Scenario 5 the posterior belongs to a ball with radius 5.06 · 10−3 around the
MAP or the CM estimate with a probability of 0.95, compared to a ball with radius 0.639 in
Scenario 4, although in both Scenarios the variance of the prior is the same. This also becomes
apparent when we consider the empirical standard deviation of the posterior; in Scenario 5a it
is approximately 3.39 · 10−3, compared to 0.571 in Scenario 4a.
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The equivalence of Laplacian in�nite product measures under translations was studied. A Lapla-
cian measure has the same admissible shifts as a Gaussian measure with the same covariance
operator. Apart from that, the density of a shifted measure relative to a centred one displays
similarities to the weighted `1-norm.

For nonlinear inverse problems, Tikhonov–Phillips regularisation with a quadratic norm
penalty is equivalent to Bayesian MAP estimation with a Gaussian prior if the log-likelihood is
Lipschitz continuous and chosen as a discrepancy term. This holds even if the log-likelihood is
unbounded and thereby extends the main result from [Dashti, Law, et al. 2013].

This variational characterisation of MAP estimates was used to study consistency of the MAP
estimator for a severely ill-posed linear problem with data corrupted by additive Laplacian noise.
In this case, the posterior distribution has a density with respect to the prior distribution and the
log-posterior density coincides with the weighted `1-norm up to a constant on �nite subspaces.
This yields a rigorous probability theoretical interpretation of variational regularisation with an
`1-discrepancy term: The regularised solution can be understood as the mode of the posterior
distribution. In a frequentist setting, the MAP estimator is asymptotically unbiased in the small
noise limit if an a priori rule is employed to choose the regularisation parameter. Under an
analytic source condition, the bias converges to zero at least in the order of the noise level, even
if the regularisation parameter is chosen to be constant. The mean squared error of the MAP
estimator converges towards the true solution at least in the order of the noise level if an analytic
source condition holds and an a priori parameter choice rule is used. For an exponentially ill-
posed linear problem, this rate coincides with the optimal asymptotic convergence rate in a
minimax sense under the presence of Gaussian noise.

The behaviour and consistency of MAP and CM estimator were studied numerically for
the classical inverse heat equation in one dimension with additive Laplacian noise. The lower
bound from the a priori parameter choice rule was observed to be sharp, insofar as choosing the
parameter below this bound results in a dramatic increase of the MSE. In a frequentist setting,
the empirical MSE of both MAP and CM estimator converges to zero in the order of the noise
level if an analytic source condition is satis�ed. This means that here, the upper bound for the
convergence rate of the MAP estimator is attained. In contrast, neither MAP nor CM estimator
converge towards the true solution in mean square if only a Sobolev-type source condition is
satis�ed.

Future research could pursue the question if a rigorous statistical interpretation of minimisers
of a Tikhonov–Phillips functional with an L1-discrepancy term as Bayesian MAP estimates is
possible, and if so, on which noise model it is based. More generally, it could be investigated if
MAP estimates can be characterised as minimisers of an Onsager–Machlup functional when
other heavy-tailed in�nite-dimensional non-Gaussian noise models are utilised. The study of
the considered linear problem could be continued by examining the posterior contraction rate
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in a frequentist setting or the consistency of the MAP estimator in a fully Bayesian setting. Also,
sublevel sets of the Onsager–Machlup functional could be used as credible regions that capture
the structure of the posterior distribution. Furthermore, one could examine if the MAP estimator
minimises a cost functional involving the Bregman distance, i.e., if it is a Bayes estimator, for
linear inverse problems with Laplacian in�nite product noise, as it is the case for Gaussian noise
in a �nite-dimensional setting [Burger and Lucka 2014].
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